• 제목/요약/키워드: Peptide antibiotics

검색결과 76건 처리시간 0.027초

항생펩타이드의 기능과 적용분야 (The Function and Application of Antibiotic Peptides)

  • 이종국;;박윤경
    • 공업화학
    • /
    • 제22권2호
    • /
    • pp.119-124
    • /
    • 2011
  • 현재, 사람들은 많은 병에 노출되어 있다. 산업화의 빠른 변화는 생산시설의 자동화, 정보 통신 산업기술의 발달로 삶의 질이 향상되었으나, 신체활동의 감소와 환경오염으로 인해 환경적 스트레스와 병원균 감염 반응에 대한 인간의 면역체계가 악화되었다. 아울러 현재 약물의 오 남용으로 다재약물내성을 갖는 미생물들(multidrug-resistant microbes)과 암세포(tumor)의 출현으로 인해 새로운 항생제 개발이 시급하다. 그들 중 하나가 항생 펩타이드(antibiotic peptide)로 기존 약물과 비교하면 약물저항성이 거의 일어나지 않는다. 여러 가지 항생활성을 가지는 펩타이드들은 다양한 생명체로부터 동정되고 있다. 이 논문은 항생 펩타이드들의 활성과 적용분야에 대해 논하려 한다.

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Cho, Jang-Hee;Lee, Dong-Hee;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1299-1309
    • /
    • 2018
  • We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.

국내토양에서 분리한 혐기성 세균 Streptococcus sp. An-21-1 이 생성하는 항생물질 II. 항생물질을 생성하는 혐기성 세균의 발효 및 항생물질의 분리 정제 (Antibiotics produced by anaerobic fermentation of Streptococcus sp. An-21-1 isolated from domestic soil, Fermentation and purification of antibiotics from anaerobe)

  • 박승춘;윤효인;오태광
    • 대한수의학회지
    • /
    • 제33권1호
    • /
    • pp.61-69
    • /
    • 1993
  • In order to search for new antibiotics from anaerobic bacteria, a large number of samples from domestic soil were collected and processed by apropriate methods. A potential strain, Streptococcus sp. An-21-1, was found to produce antimicrobial compounds. The Results were as follows; 1. During fermentation, the bacteria grew rapidly up to 20hr, thereafter entered the death phase. The optimal temperature and pH for the bacterial growth were $37^{\circ}C$ and pH 7.0, respectively. 2. Antibiotics were purified from culture broth by solvent extraction, silica gel column chromatography and Sepadex L.H 20 column. 3. Physicochemical properties of Ap-1 and Ap-2 were similar ; Their melting points were between $234-237^{\circ}C$. Color reactions of ninhydrin, 2,7-dichlorofluorescein, 4-dimethylaminobenzaldehyde, Dragendroffs reagent and 20% $H_2SO_4$, were positive. Therefore, we assumed that these antibiotics have amine group, immine group, alkaloid, and lipid components. These were stable to heat. UV spectrophotometry showed two peaks at 210 nm and 260 nm. From above results, we assumed these antibiotics are belong to the peptide antibiotic family.

  • PDF

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권5호
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.

다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드 (Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria")

  • 박성철;나재운
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.429-432
    • /
    • 2012
  • 최근 항생제에 대한 내성이 빠르게 확산됨에 따라 이를 극복하기 위해 새로운 항생제들을 찾기 위한 노력이 많은 연구자들에 의해 이루어지고 있다. 미생물의 외부공격에 대해 모든 생명체들은 방어물질을 분비하거나 내재하고 있는 데 그 중 하나가 항균 펩타이드이며, 전 세계적으로 활발한 연구가 이루어지고 있고 새로운 차세대 항생제로써 인식 되어진다. 이에 본 총설에서는 항균 펩타이드의 미생물에 대한 항생활성, 작용기작과 개발현황에 대해 고찰하고자 한다.

The ermKleader peptide alterations leading to differential efficiency of induction by erythromycin

  • Kim, Jeong-A;Min, Yu-Hong;Yun, Hee-Jeong;Lim, Jung-A;Lee, Sang-Won;Kim, ung-Hoon;Park, Eung-Chil
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.335.1-335.1
    • /
    • 2002
  • The ermK gene from Bacillus lichenformis encodes an inducible rANA methylase that confers resistance to the macrolide-lincosamide-streptograminB antibiotics. The ermKmANA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of erm leader RNA and a leader peptide have been reported as the elements that control expression. (omitted)

  • PDF

MLS계 항생물질 유도내성 유전자의 크로닝과 유전자의 발현조절 기전 - Staphylococus aureus TR-1균주의 프라스미드 pMB4에 존재하는 MLS 내성 유전자 ermC-4 (Cloning of Inducible MLS Antibiotics Resistance Genes and their Expression Control Mechanism - ermC-4, a macrolide-lincosamide-streptogramin B resistance determinant on pMB4 from Staphylococcus aureus TR-1)

  • 김수환;최응칠;김병각;심미자
    • 약학회지
    • /
    • 제35권1호
    • /
    • pp.22-29
    • /
    • 1991
  • pMB4 is a 2.4-kilobase plasmid of Staphylococcus aureus TR-1 that confers inducible resistance to the macrolide-lincosamide-streptogramin B(MLS) antibiotics. By subcloning studies, it was found that the MLS resistance determinant was located at 1.0Kb fragment between Sau3AI and TaqI sites. DNA sequence of the MLS resistant determinant, named ermC-4 was determined, and found to be highly homologous with that of ermC. Because the leader peptide sequence of ermC-4 was identical with that of ermC, the expression of the resistance gene is thought to be controlled by posttranscriptional attenuation in S. aureus TR-1.

  • PDF

양식장 넙치 폐사어를 이용한 단백질 소재의 개발에 관한 연구(2) -산업화공정 연구- (A Study on Development of Protein Materials using Dead Flatfish from Fish Farms(2) -Industrial Process-)

  • 강건희;이민규;감상규;정갑섭
    • 한국환경과학회지
    • /
    • 제22권12호
    • /
    • pp.1625-1631
    • /
    • 2013
  • In manufacturing of flatfish skin collagen peptide (FSCP) and flatfish protein hydrolysate (FPH) by reuse of dead flatfish from fish farm in Jeju island, the industrial process was optimized with the laboratory scale research and the on-field process. Segmented unit processes from raw material incoming to shipment were established to produce commercial product of FSCP and FPH. Total plate counts of FSCP were twenty five times of FPH, but food poisoning bacteria were not detected in two samples. FSCP and FPH were safe from heavy metal such as Pb(II), Cd(II) and Hg(II). The residual contents of antibiotics and disinfection matter in FSCP and FPH were not detected. The optimized process for mass production made the one-third of the running time and two times of the yield. From economic analysis, the production cost was estimated to 22,000 and 12,000 won/kg for FSCP and FPH, respectively. Therefore the product from the reuse of dead flatfish was expected to have a considerable competitive price and high added-value functional food material compared with other commercially available fish products.

Antimicrobial Activity of the Scolopendrasin V Peptide Identified from the Centipede Scolopendra subspinipes mutilans

  • Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Ahn, Mi-Young;Yun, Eun-Young;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.43-48
    • /
    • 2017
  • In a previous study, we analyzed the transcriptome of Scolopendra subspinipes mutilans using next-generation sequencing technology and identified several antimicrobial peptide candidates. One of the peptides, scolopendrasin V, was selected based on the physicochemical properties of antimicrobial peptides using a bioinformatics strategy. In this study, we assessed the antimicrobial activities of scolopendrasin V using the radial diffusion assay and colony count assay. We also investigated the mode of action of scolopendrasin V using flow cytometry. We found that scolopendrasin V's mechanism of action involved binding to the surface of microorganisms via a specific interaction with lipopolysaccharides, lipoteichoic acid, and peptidoglycans, which are components of the bacterial membrane. These results provide a basis for developing peptide antibiotics.

Effect of Antibiotics upon the Antibacterial Activity of Platelet Microbicidal Protein against Streptococcus rattus BHT

  • Kim, Jae-Wook;Choe, Son-Jin;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • 제34권1호
    • /
    • pp.43-48
    • /
    • 2009
  • Thrombin-induced platelet microbicidal protein (tPMP) is a small cationic peptide that exerts potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus and Streptococcus rattus BHT. Earlier evidence has suggested that tPMP targets and disrupts the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacteria or whether subsequent, presumably intracellular, events are also involved in this process. In this study, we investigated the microbicidal activity of rabbit tPMP toward S. rattus BHT cells in the presence or absence of a pretreatment with antibiotics that differ in their mechanisms of action. The streptocidal effects of tPMP on control cells (no antibiotic pretreatment) were rapid and concentration-dependent. Pretreatment of S. rattus BHT cells with either penicillin or amoxicillin (inhibitors of bacterial cell wall synthesis) significantly enhanced the anti-S. rattus BHT effects of tPMP compared with the effects against the respective control cells over most tPMP concentration ranges tested. On the other hand, pretreatment of S. rattus BHT cells with tetracycline or doxycycline (30S ribosomal subunit inhibitors) significantly decreased the streptocidal effects of tPMP over a wide peptide concentration range. Furthermore, pretreatment with rifampin (an inhibitor of DNA-dependent RNA polymerase) essentially blocked the killing of S. rattus BHT by tPMP at most concentrations compared with the respective control cells. These results suggest that tPMP exerts anti-S. rattus BHT activity through mechanisms involving both the cell membrane and intracellular targets.