• Title/Summary/Keyword: Peptide alkaloid

Search Result 10, Processing Time 0.028 seconds

A Highly Stereoselective Reaction in Aminolysis of 3-Acyl-4-(S)-isopropyl-1,3-thiazolidine-2-thione with Racemic Amines (3-Acyl-4(S)-isopropyl-1,3-Thiazolidine-2-Thione과 라세미아민의 입체선택적인 반응)

  • Tae Myoung Jeong;Ki Hun Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.588-592
    • /
    • 1988
  • A chiral recognition was observed in aminolysis of 3-acyl-4(S)-isopropyl-1,3-thiazolidine-2-thione by racemic amine to give an optically active amide (S-excess) and amine (R-excess). This procedure can be applied to synthesis of macrocyclic diamide macrocyclic spermidine alkaloid, and peptide. The rate of this aminolysis is remarkably affected by steric surrounding; completion of reaction can be easily judged by the disappearance of the original yellow color of 4(S)-AITT. These features of the aminolysis suggested a potential recognition racemic amines by a chiral 4 (S)-AITT derivative. Thus 4 (S)-AITT was synthesized from 4 (S)-isopropyl-1, 3-thiazolidine-2-thione and carboxylic acids.

  • PDF

Studies on the Sedative Alkaloids from Zizyphus spinosus Semen

  • Han, Byung-Hoon;Park, Myung-Hwan;Park, Jeong-Hill
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.4
    • /
    • pp.233-238
    • /
    • 1985
  • A number of sedative alkaloids were isolated from Sanjoin(酸棗仁), the seeds of Zizyphus vulgaris Lamark var. spinosus Bunge (Rhamnaceae) which is an important Chinese medicinal material used to treat insomnia and sometimes to treat sleepiness. Those compounds were designated as Sanjoinine-A, B, C, D, etc. depending on the order of increasing polarity. Sanjoinine-A, $C_{31}H_{42}N_4O_4$, $mp\;249^{\circ}$, $[{\alpha}]^{27}_D-316$, Sanjoinine-B, $C_{30}H_{40}N_4O_4$, $mp\;212{\sim}4^{\circ}$, Sanjoinene, $C_{29}H_{35}N_3O_4$, $mp\;281{\sim}2^{\circ}$, $[{\alpha}]^{22}_D-272$, Sanjoinine-D, $C_{32}H_{46}N_4O_5$, $mp\;256{\sim}8^{\circ}$, $[{\alpha}]^{22}_D-53.6$, Sanjoinine-F, $C_{31}H_{42}N_4O_5$, $mp\;228{\sim}9^{\circ}$, $[{\alpha}]^{22}_D-215$, and $Sanjoinine-G_1,\;C_{31}H_{44}N_4O_5,\;mp\;236{\sim}8^{\circ},\;[{\alpha}]^{22}_D-68.6$, were found as 14-membered cyclic peptide alkaloids, $Sanjoinine-G_2,\;C_{30}H_{42}N_4O_4,\;mp\;182^{\circ},\;[{\alpha}]^{22}_D-79.2$, as being open chain peptide alkaloid, and Sanjoinine-E, $C_{19}H_{21}NO_2$, $mp\;166^{\circ}$, $[{\alpha}]^{20}_D-146.2$, N-Methylasimilobine, $C_{18}H_{19}NO_2$, $mp\;193{\sim}5^{\circ}$, $[{\alpha}]^{20}_D-204$, Sanjoinine-Ia, $C_{18}H_{19}NO_2$, $mp\;155{\sim}7^{\circ}$, $[{\alpha}]^{20}_D-140$, Sanjoinine-Ib, $C_{19}H_{21}NO_4$, $mp\;184^{\circ}$, Sanjoinine-K, $C_{16}H_{19}NO_3$, $mp\;159{\sim}61^{\circ}$, $[{\alpha}]^{20}_D+35$, Caaverine, $C_{17}H_{17}NO_2$, $mp\;204^{\circ}$, $[{\alpha}]^{20}_D-80$, and Zizyphusine, $C_{20}H_{24}NO_4$, $mp\;214{\sim}6^{\circ}$, $[{\alpha}]^{20}_D+317$ as being aporphine alkaloids. The heat treatment of the cyclic peptide alkaloids produced their isomeric products which showed enhanced sedative activity. The chemical structure of the isomeric products will be discussed.

  • PDF

Inhibition of Calmodulin-Dependent Protein Kinase II by Cyclic and Linear Peptide Alkaloids from Zizyphus Species

  • Han Yong Nam;Hwang Keum Hee;Han Byung Hoon
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.159-163
    • /
    • 2005
  • The effects of sedative peptide alkaloids from Zizyphus species on calmodulin- dependent protein kinase II were investigated. Protein kinase II activity was assayed on the basis of its ability to activate tryptophan 5-monooxygenase as its substrate in the presence of calmodulin. All thirteen alkaloids tested were stronger inhibitors than chlorpromazine ($IC_50,\;98{\mu}M$) on calmodulin-dependent protein kinase II. Among them, the most potent inhibitor was daechuine S27 ($IC_{50},\;2.95{\mu}M$), which was stronger than pimozide ($IC_{50},\;15.0{\mu}M$).

Inhibition of Calmodulin-Dependent Calcium-ATPase and Phosphodiesterase by Various Cyclopeptides and Peptide Alkaloids from the Zizyphus Species

  • Hwang, Keum-Hee;Han, Yong-Nam;Han, Byung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.24 no.3
    • /
    • pp.202-206
    • /
    • 2001
  • The effects of various sedative cyclopeptides and peptide alkaloids from the Zizyphus species on calmodulin-dependent $Ca^{2+}$ -ATPase and phosphodiesterase were Investigated. Calmodulin-induced activation of $Ca^{2+}$-ATPase was strongly inhibited by sanjoinine-A dialdehyde (IC_{50}$, 2.3$\mu\textrm{m}$), -Ah1 (IC_{50}$, 4.0$\mu\textrm{m}$), -A (IC, 4.6$\mu\textrm{m}$), and -G2 (IC_{50}$, 7.2$\mu\textrm{m}$), while calmodulin-induced activation of phosphodiesterase was strongly inhibited by both deachuine- S10 (IC_{50}$, 4.9$\mu\textrm{m}$) and sanjoinine-D (IC_{50}$, 9.0$\mu\textrm{m}$). The inhibitory activity of the various cyclopeptides and peptide alkaloids on $Ca^{2+}$-ATPase was found to correlate well with their Sedative activity.

  • PDF

DH332, a Synthetic β-Carboline Alkaloid, Inhibits B Cell Lymphoma Growth by Activation of the Caspase Family

  • Gao, Pan;Tao, Ning;Ma, Qin;Fan, Wen-Xi;Ni, Chen;Wang, Hui;Qin, Zhi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.3901-3906
    • /
    • 2014
  • Aim: The purpose of this study was to investigate anti-tumor effects and safety of DH332, a new ${\beta}$-carboline alkaloids derivatives in vitro and in vivo. Materials and Methods: The effects of DH332 on human (RAMOS RA.1) and mouse (J558) B lymphoma cell lines were detected using a CCK-8 kit (Cell Counting Kit-8), and apoptosis was detected by flow cytometry with PI/annexinV staining. Western blotting was used to detected caspase-3 and caspase-8. Neurotoxic and anti-tumor effects were evaluated in animal experiments. Results: DH332 exerts a lower neurotoxicity compared with harmine. It also possesses strong antitumor effects against two B cell lymphoma cell lines with low $IC_{50s}$. Moreover, DH332 could inhibit the proliferation and induce the apoptosis of RAMOS RA.1 and J558 cell lines in a dose-dependent manner. Our results suggest that DH332 triggers apoptosis by mainly activating the caspase signaling pathway. In vivo studies of tumor-bearing BALB/c mice showed that DH332 significantly inhibited growth of J558 xenograft tumors. Conclusions: DH332 exerts effective antitumor activity in vitro and in vivo, and has the potential to be a promising drug candidate for lymphoma therapy.

Antibiotics produced by anaerobic fermentation of Streptococcus sp. An-21-1 isolated from domestic soil, Fermentation and purification of antibiotics from anaerobe (국내토양에서 분리한 혐기성 세균 Streptococcus sp. An-21-1 이 생성하는 항생물질 II. 항생물질을 생성하는 혐기성 세균의 발효 및 항생물질의 분리 정제)

  • Park, Seung-chun;Yun, Hyo-in;Oh, Tae-kwang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.61-69
    • /
    • 1993
  • In order to search for new antibiotics from anaerobic bacteria, a large number of samples from domestic soil were collected and processed by apropriate methods. A potential strain, Streptococcus sp. An-21-1, was found to produce antimicrobial compounds. The Results were as follows; 1. During fermentation, the bacteria grew rapidly up to 20hr, thereafter entered the death phase. The optimal temperature and pH for the bacterial growth were $37^{\circ}C$ and pH 7.0, respectively. 2. Antibiotics were purified from culture broth by solvent extraction, silica gel column chromatography and Sepadex L.H 20 column. 3. Physicochemical properties of Ap-1 and Ap-2 were similar ; Their melting points were between $234-237^{\circ}C$. Color reactions of ninhydrin, 2,7-dichlorofluorescein, 4-dimethylaminobenzaldehyde, Dragendroffs reagent and 20% $H_2SO_4$, were positive. Therefore, we assumed that these antibiotics have amine group, immine group, alkaloid, and lipid components. These were stable to heat. UV spectrophotometry showed two peaks at 210 nm and 260 nm. From above results, we assumed these antibiotics are belong to the peptide antibiotic family.

  • PDF

Aqueous Extract of Ma huang Decreases Neuropeptide Y Expression in the Hypothalamus of Rats

  • Shin Mal Soon;Shin Min Chul;Jang Mi Hyean;Chang Hyun Kyung;Kim Chang Ju;Kim Jeong Sean;Kim Ee Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1116-1119
    • /
    • 2003
  • Ma huang, the dried plant stem of Ephedra Intermedia Schrenk et CA, is one of the well known medicinal herbs, and has been used for the diaphoretic, antiasthmatic, and diuretic actions. Ma huang is an ephedrine type alkaloid used for the weight loss and energy expenditure. Medications based on the Ma huang have been found to be effective in the treatment of obesity. Neuropeptide Y (NPY), a 36-amino-acid peptide and concentrated in the hypothalamus, stimulates feeding desire and decrease energy expenditure. In the present study, the effect of Ma huang on the expression of NPY in the rat hypothalamus was investigated using immunohistochemistry. The present results demonstrated that Ma huang treatment suppressed weight gain and NPY expression in the hypothalamus depending upon the dosage used. Based on the results, it can be suggested that Ma huang treatment is effective in curbing the desire for food via modulation of NPY expression under the normal conditions.

Anticandidal Activity of the Protein Substance from Coptidis Rhizoma (황련에서 분리된 단백질성분의 항진균효과)

  • Kim Hyunkyung;Lee Jue-Hee;Shim Jin Kie;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.323-329
    • /
    • 2005
  • Antimicrobial peptides are evolutionary ancient weapons for animal and plant species to depend themselves against infectious microbes. In the present study, we investigated if an antimicrobial peptide was produced from Coptidis Rhizoma. For the determination, protein substance from the medicinal plant was isolated by various preparations. Among the preparations, the protein portion dissolved in phosphate-buffered saline solution (CRP-DS) that contained the most amount of protein $(90\%)$ resulted in maximal inhibition of Candida albicans which causes local and systemic infections. Analyses by gel-electrophoresis and gel-permeation chromatography showed the CRP-DS formed a single band of approximately 11.8 KDa as molecular size. Antifungal activity of the CRP-DS was almost equivalent to antifungal activity by fluconazole, resulting in MIC (minimal inhibitory concentration) of approximately $50{\mu}g/ml$. The antifungal activity was a dose-dependent. The antifungal activity appeared to be inactivated by heat-treatment and ionic strength, respectively. In a murine model, the CRP-DS enhanced resistance of mice against disseminated candidiasis. The HPLC analysis demonstrated maximum $4\%$ of berberine as residual content in the CRP-DS preparation resulted in no influence on the antifungal activity. In addition, protein portion isolated from Phellodendri Cortex producing the alkaloid component like Coptidis Rhizoma had no such anticandidal effect. These results indicate that the protein substance from Coptidis Rhizoma was responsible for the antifungal activity.

Chemical Constituents of Nauclea vanderguchtii

  • Nkouayeb, Brice Maxime Nangmou;Azebaze, Anatole Guy Blaise;Tabekoueng, Georges Bellier;Tsopgni, Willifred Dongmo Tekapi;Lenta, Bruno Ndjakou;Frese, Marcel;Sewald, Norbert;Vardamides, Juliette Catherine
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2020
  • Phytochemical investigation of leaves, barks and roots of Nauclea vanderguchtii led to the isolation of sixteen compounds, which includes one citric acid derivative (2), one alkaloid (16), one peptide derivative (3), and twelve triterpenes (1, 4 - 13). These compounds were identified as rotundanonic acid (1), 2-hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester (2), asperphenamate (3), lupeol (4), stigmasterol (5), betulin (6), betulenic acid (7), stigmasterol 3-O-β-D-glucopyranoside (8), quinovic acid 3β-O-α-L-rhamnoside (9), α-amyrin (10), 3-oxoquinovic acid (11), ursolic acid (12), hederagenin (13), rotundic acid (14), clethric acid (15), and naucleficine (16) by the analysis of their NMR spectroscopic data including 2D NMR spectra and by comparison of their spectroscopic data reported in the literature. Compounds 1 and 3 were isolated for the first time in the genus Nauclea, and compound 2 was isolated for the first time from the Rubiaceae family. Complete NMR assignations for 1 have been published for the first time.

Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng

  • Hyun, Sun Hee;Kim, Sung Won;Seo, Hwi Won;Youn, Soo Hyun;Kyung, Jong Soo;Lee, Yong Yook;In, Gyo;Park, Chae-Kyu;Han, Chang-Kyun
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.527-537
    • /
    • 2020
  • Panax ginseng, a medicinal plant, has been used as a blood-nourishing tonic for thousands of years in Asia, including Korea and China. P. ginseng exhibits adaptogen activity that maintains homeostasis by restoring general biological functions and non-specifically enhancing the body's resistance to external stress. Several P. ginseng effects have been reported. Korean Red Ginseng, in particular, has been reported in both basic and clinical studies to possess diverse effects such as enhanced immunity, fatigue relief, memory, blood circulation, and anti-oxidation. Moreover, it also protects against menopausal symptoms, cancer, cardiac diseases, and neurological disorders. The active components found in most Korean Red Ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds. In this review, the identity and bioactivity of the non-saponin components of Korean Red Ginseng discovered to date are evaluated and the components are classified into polysaccharide and nitrogen compounds (protein, peptide, amino acid, nucleic acid, and alkaloid), as well as fat-soluble components such as polyacetylene, phenols, essential oils, and phytosterols. The distinct bioactivity of Korean Red Ginseng was found to originate from both saponin and non-saponin components rather than from only one or two specific components. Therefore, it is important to consider saponin and non-saponin elements together.