• Title/Summary/Keyword: Pentane

Search Result 164, Processing Time 0.032 seconds

Changes of Volatile Flavor Components in Garlic-Seasoning Oil (마늘 풍미유의 휘발성 향기 성분의 변화)

  • Koo, Bon-Soon;Ahn, Myung-Soo;Lee, Ki-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.520-525
    • /
    • 1994
  • This study was carried on the garlic-seasoning oil production by autoclaving method and evaporating method in order to research a developed method. The raw, flake, extract states of garlic was added 40%(w/w) of total amounts to corn salad oil. All samples treated with various conditions analyzed the volatile flavor components(VFC) during incubating ($40{\pm}2^{\circ}C$) and heating ($185{\pm}2^{\circ}C$). In the garlicseasoning oils, the contents of propane, pentane, methyl allyl trisulfide and diallyl trisulfide as the major VFC were decreased while the contents of propenal and hexanal increased according to the storage and heat treatment. The order of flavor contents among garlic states were raw>extract>flake, but flavor stability were raw>flake>extract states during storage, while flake>raw>extract states in heat treatment. VFC in garlic-seasoning oil made by evaporating method were about 66.1% level of those made by autoclaving method, but the changing tendency of their content during storage and heat treatment were shown to be similar. According to those results, autoclaving method and evaporating method were thought to the rational method in preparation of garlic-seasoning oil.

  • PDF

Rancidity Analysis of Rapeseed Oil under Different Storage Conditions Using Mass Spectrometry-based Electronic Nose (질량분석기 기반-전자코를 이용한 저장중 유채유의 산패 분석)

  • Hong, Eun-Jeung;Lim, Chae-Lan;Son, Hee-Jin;Choi, Jin-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.699-704
    • /
    • 2010
  • Rapeseed oil was stored under different conditions such as in the dark, with UV treatment, and with prooxidantscytochrome C and copper ion. The rapeseed oils stored at different temperatures were analyzed by a mass spectrometrybased electronic nose and discriminant function analysis (DFA). Volatile components in the rapeseed oil increased with storage time, and the discriminant function first score (DF1) moved from a positive position to a negative position as storage time increased. Changes in DF1 were higher under UV treatment than under the dark condition (DF1: $r^2$=0.9481, F=307.03). The different DF1 values (F1) under the dark condition were 0.099, 0.187, and 0.278 as storage temperature increased. The different values under UV treatment were 0.554, 0.588, and 0.542, as storage temperature increased from 4 to $26^{\circ}C$. As concentrations of prooxidants copper ion and cytochrome C increased, amounts of volatile components also increased. These were confirmed by DFA. Furthermore, changes in responses at each ion fragment agreed with reported results for GC/MS, which formed after rancidity of the oil, including pentane, pentanal, 1-pentanol, hexanal, n-octane, 2-hexenal, heptanal, 2-heptenal, decane, 2-octenal, undecane, and dodecane.

A Study on The Development and Evaluation of The Pine Needle Flavor oil (솔잎 향미유의 제조와 기호성에 관한 연구)

  • 원종숙;안명숙
    • Korean journal of food and cookery science
    • /
    • v.17 no.2
    • /
    • pp.129-138
    • /
    • 2001
  • In this study, development of the pine needle flavor oils and their application to foods, especially to traditional Korean foods, were investigated. The pine needle flavor oils were prepared by the autoclaving method, and their volatile flavor components(VFCs) were determined by capillary gas chromatographic method The major flavor components of the pine noddle flavor oil were a -pinene 31.1%, pentane 9.8%, tricyclene 7.5%, camphene 6.8%, hexanal 6.2%, propane 6.0%, ${\beta}$-pinene 5.6%, limonene 3.9%. The acceptability of the pine needle flavor oils, sensory evaluation including a preference test and quantitative descriptive analysis(QDA), of the pine needle flavor oil, a sesame oil, and a blended oil (pine needle flavor oil : sesame oil 50 : 50 v/v) was carried out. The blended oil and sesame oil showed much higher preference scores than the pine needle flavor oil, and blended oil was almost as acceptable as sesame oil(P < 0.05). The results seem to indicate that blended oil can be used as a unique substitution for sesame oil in some foods, especially in some traditional Koran food.

  • PDF

Volatile Flavor Components in Cooked Black Rice (취반된 흑미의 휘발성 향기 성분)

  • Song, Seon-Joo;Lee, You-Seok;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1015-1021
    • /
    • 2000
  • Volatile flavor components (VFCs) in cooked black rices (Suwon-415 and Chindo) were studied. The major reactions during cooking, which result in aroma volatiles, are the Maillard reaction between amino acids and reducing sugars, and thermal degradation of lipid. Black rices washed with water were soaked in 1.5 folds water and heated at $110^{\circ}C$ in oil bath for 30min. VFCs in cooked black rices were extracted for three hours by SDE and were analyzed by GC and GC/MS. A total of 91, 82 volatiles were identified in Suwon-415 and Chindo black rice, respectively. Suwon-415 was composed of 26 alcohols, 10 aldehydes, 5 acids, 11 esters, 15 ketones, 9 hydrocarbons, 3 furans, 3 nitrogen containing compounds and 9 sulfur containing compounds. Chindo was composed of 28 alcohols, 9 aldehydes, 4 acids, 12 esters, 14 ketones, 5 hydrocarbons, 3 furans, 3 nitrogen containing compounds and 4 sulfur containing compounds.

  • PDF

Studies on the Optimum Fermenting Conditions of Dongchimi for Production of Ion Beverage (이온음료 제조를 위한 동치미의 최적 담금 조건에 관한 연구)

  • Ko, Eun-Jung;Hur, Sang-Sun;Park, Man;Choi, Yong-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.141-146
    • /
    • 1995
  • The study was conducted for optimum fermenting conditions of Dongchimi(pony tailed chinese radish kimchi) in production of ion beverage. The changes of pH and total acidity were increased as the temperature increased. Non-volatile organic acids, such as lactic acid, citric acid, malic acid and succinic acid were produced in Dongchimi fermentation. The amount of lactic acid was increased higher, followed by citric acid and malic acid. However succininc acid was produced a little of amount at $0^{\circ}C$. Lactic acid producing bacteria number increased in initial period and then decreased in last period of fermentation. During lactic acid producing bacteria was increased, the amouont of lactic acid was increased. The flavor components were tentatively identified as methyl pentane, ethyl thioethene 2, 3-diazaindolizine, dimethyl disulfide. The optimum fermenting conditions of Dongchimi for production of ion beverage were 24~29 days at $0^{\circ}C$, 9~12dyas at $5^{\circ}C$ and 16~22days at $10^{\circ}C$, respectively.

  • PDF

Headspace Analysis for Residual Hexane in Vegetable Oil

  • Oh, Chang-Hwan;Kwon, Yong-Kwan;Jang, Young-Mi;Lee, Dal-Su;Park, Jong-Sei
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2005
  • To enforce the maximum residue limit for residual hexane (0.005 g/kg) in commercially available Korean vegetable oil, convenient and accurate quantification methods were investigated. Using dual surrogate standards, pentane and heptane were dissolved in ethanol, and then added to hexane-tree sunflower oil for setting up the calibration curve. Gas Chromatograph-Flame Ionization Detector with a porous layer open tubular column, indicated good chromatographic separation of hexane from other inhibiting matrix components. The lowest calibration level was $0.5\;{\mu}g/g$, not exceeding a relative standard deviation of 10% (RSD%), and 1.0\;{\mu}g/g$ not exceeding a deviation of 22% RSD% using heptane as an internal standard for the Static headspace analysis by using a headspace auto-sampler and manual injection, respectively. The residual hexane was detected in nine of the samples among 87 vegetable oil samples purchased on the local market.

Comparisons of Adsorption-Desorption Characteristics of Major 10 Kinds Components Consisting of Gasoline Vapor (유증기를 구성하는 주요 10종류 성분의 온도에 따른 흡·탈착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1593-1600
    • /
    • 2014
  • Adsorption and desorption characteristics of the representative 10 kinds components consisting of gasoline vapor on activated carbon were investigated at the temperature range of $-30^{\circ}C{\sim}25^{\circ}C$. The breakthrough curves of each vapors obtained by the Thomas model were well described the breakthrough experimental results of this study. The breakthrough times of each vapors were correlated with the molecular weight, density, and vapor pressure. The breakthrough times had greater correlation with boiling point than molecular weight and density. The slope of the breakthrough curve was a proportional relationship with the rate constant (k) of Thomas model expression. The higher the slope of the breakthrough curve, the rate constant was larger. The biggest slope vapor had the smallest adsorption capacity ($q_e$). Adsorption and desorption characteristics of mixed vapor similar to the gasoline vapor were studied at room temperature ($25^{\circ}C$). The mixed vapor consisting of 9 components; group A (pentane, hexene, hexane), group B (benzene, toluene), group C (octane, ethylbenzene, xylene, nonane) was examined. Group A was not nearly adsorbed because of substitution by group C, and the desorption capacity of group A was smaller than group C. The adsorbed substances were confirmed to be Group C.

Volatile Flavor Components in Bogyojosaeng and Suhong Cultivars of Strawberry (Fragaria ananassa Duch.)

  • Park, Eun-Ryong;Lee, Hae-Jung;Kim, Kyong-Su
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.119-125
    • /
    • 2000
  • Volatile flavor components of two strawberry (Fragaria ananassa Duch.) varieties, Bogyojosaeng and Suhong, ere extracted by SDE(Simultaneous steam distillation and extraction) using a mixture of n-pentane and diethylether (1:1, v/v) as an extract solvent. Analysis of the concentrate by capillary gas chromatography and gas chromatography-mass spectrometry led to the identification of 146 and 153 components in Bogyojosaengand Suhong respectively. There were 49 esters, 25 alcohols, 20 ketones, 24 aldehyds, 6 acids, 9 terpenes and terpene derivatives, 2ethers, 11 unknowns and miscelaneous in Bogyojosaeng and 67 ethers, 9 unknowns and miscellaneous in Suhong. Among these, (E)-2-hexenyl acetae (4.56%) in Bogyojosaeng and (E)-nerolidol (12.38%) in Suhong were major compounds and aceticacid, (E)-2-hexenal, hexyl acetate, ethyl acetate, ethyl butanoate, methyl butanoate, ethyl hexanoate and ${\gamma}$-dodecalactone were the main components in each sample, though there were several differences in composition and threshold of volatile compounds. Total contents of volatile components isolated and identified in Bogyojosaeng an Suhong were 9.010 and 12.527 mg/kg, respectively.

  • PDF

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

Evaluation of Intrinsic Bioremediation of Methyl Tert-butyl Ether (MTBE) Contaminated Groundwater

  • Chen, Colin S.;Tien, Chien-Jun;Zhan, Kai-Van
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.9-17
    • /
    • 2014
  • This paper reported the use of real-time polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and the culture-based method in the intrinsic bioremediation study at a petroleum contaminated site. The study showed that phenol hydroxylase gene was detected in groundwater contaminated with benzene, toluene, ethylbenzene, xylene isomers (BTEX) and methyl tert-butyl ether (MTBE). This indicated that intrinsic bioremediation occurred at the site. DGGE analyses revealed that the petroleum-hydrocarbon plume caused the variation in microbial communities. MTBE degraders including Pseudomonas sp. NKNU01, Bacillus sp. NKNU01, Klebsiella sp. NKNU01, Enterobacter sp. NKNU01, and Enterobacter sp. NKNU02 were isolated from the contaminated groundwater using the cultured-based method. Among these five strains, Enterobacter sp. NKNU02 is the most effective stain at degrading MTBE without the addition of pentane. The MTBE biodegradation experiment indicated that the isolated bacteria were affected by propane. Biodegradation of MTBE was decreased but not totally inhibited in the mixtures of BTEX. Enterobacter sp. NKNU02 degraded about 60% of MTBE in the bioreactor study. Tert-butyl alcohol (TBA), acetic acid, 2-propanol, and propenoic acid were detected using gas chromatography/mass spectrometry during MTBE degraded by the rest cells of Enterobacter sp. NKNU02. The effectiveness of bioremediation of MTBE was assessed for potential field-scale application.