• Title/Summary/Keyword: Penetration enhancement

Search Result 94, Processing Time 0.024 seconds

The penetration enhancement and the lipolystic effects of TAT-GKH, in both In vitro, Ex vivo, and In vivo.

  • Lim, J.M.;Chang, M.Y.;Park, S.G.;Kang, N.G.;Song, Y.S.;Lee, Y.H.;Yoo, Y.C.;Cho, W.G.;Han, S.G.;Kang, S.H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.87-107
    • /
    • 2003
  • It was demonstrated that Transactivating transcriptional activator(TAT) protein from HIV-1 shown to enter cells when added to the surrounding media. TAT peptide chemically attached to various proteins was able to deliver these proteins to various cell and even in tissues in mice with high levels in heart and spleen. In this study, the tripeptide GKH(Glycine-Lysine-Histidine) derived from Parathyroid hormone (PTH), which was known as lipolytic peptide, is attached to 9-poly Lysine(TAT) to be used as a cosmetic ingredient for slimming products. When Glycerol release, expressed as extracellular glycerol concentration, is lipolysis index, TAT-GKH at $10^{-5}$mo1/L induces approximately 41.5% maximal lipolytic effects in epididymal adipocytes isolated from rats, compared with basal lipolysis. Epididymal adipose tissues of male rats is assessed ex vivo by microdialysis. Probes are perfused with Ringer solution in which increasing concentrations of TAT-GKH. The perfusion of TAT-GKH induces lipolytic effect. Penetration study showed that TAT-GKH efficiently elevates 36 times higher penetration into the excised hairless mice skin than GKH. in vivo study showed that TAT-GKH had a better effect upon the relative volume of eye bag after 28 days of application on twenty(+2) healthy female volunteers. It was identified that TAT-GKH increases penetration enhancement and lipolytic effects in both in vitro, ex vivo and in vivo.

  • PDF

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

Welding Characteristics of A-TIG Using Various Compositions of Active Fluxes (활성플럭스 조성에 따른 A-TIG용접 특성)

  • Kim, Bong-Hun;Gong, Yong-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.26-31
    • /
    • 2014
  • Conventional TIG(C-TIG) welding process guarantees higher quality weldment when compared with other processes. However, C-TIG with inherent low penetration shows disadvantages in productivity, especially for thick-walled structure. To overcome these handicaps, active-flux TIG(A-TIG) welding has been introduced and studied widely in a motivation to improve both quality and productivity. Present study made a focus on optimum combination of oxide components to enhance arc contraction and penetration. Results indicated that arc contraction inducing enhancement of penetration could be possible when composition of active fluxes was well matched with base metal.

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

A Study on the Color Granite Fabrication by Bias Enhancement Method (바이어스 인가 방식에 의한 컬러 화강석 제조에 관한 연구)

  • Park, Jong Kug;Shin, Hong-Jik;Choi, Won Seok;Han, Jae Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.247-249
    • /
    • 2016
  • In this study, we investigated the color change of the normal light gray granite as the high value color granite. By coating the metal catalyst liquid on the surface of granite stone, the metal particles were penetrated into the granite and the color of granite was changed permanently through the annealing treatment. To increase penetration depth into the granite, we used DC (direct current) bias. Two kinds of bias were used such as DC bias and pulse DC bias. And the penetration time was changed as 30 and 60 min. In all cases, the color granite were successfully obtained. Regardless of the catalyst reaction time, the penetration depth was increased by using the bias treatment. We obtained a penetration depth of 21 mm with the DC pulse bias during 60 min.

Experimental Investigation of Electrochemical Corrosion and Chloride Penetration of Concrete Incorporating Colloidal Nanosilica and Silica Fume

  • Garg, Rishav;Garg, Rajni;Singla, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.440-452
    • /
    • 2021
  • Enhancement of durability and reduction of maintenance cost of concrete, with the implementation of various approaches, has always been a matter of concern to researchers. The integration of pozzolans as a substitute for cement into the concrete is one of the most desirable technique. Silica fume (SF) and colloidal nanosilica (CS) have received a great deal of interest from researchers with their significant performance in improving the durability of concrete. The synergistic role of the micro and nano-silica particles in improving the main characteristics of cemented materials needs to be investigated. This work aims to examine the utility of partial substitution of cement by SF and CS in binary and ternary blends in the improvement of the durability characteristics linked to resistance for electrochemical corrosion using electrical resistivity and half-cell potential analysis and chloride penetration trough rapid chloride penetration test. Furthermore, the effects of this silica mixture on the compressive strength of concrete under normal and aggressive environment have also been investigated. Based on the maximum compression strength of the concrete, the optimal cement substituent ratios have been obtained as 12% SF and 1.5% CS for binary blends. The optimal CS and SF combination mixing ratios has been obtained as 1.0% and 12% respectively for ternary blends. The ternary blends with substitution of cement by optimal percentage of CS and SF exhibited decreased rate for electrochemical corrosion. The strength and durability studies were found in consistence with the microstructural analysis signifying the beneficiary role of CS and SF in upgrading the performance of concrete.

Effect of Vibration on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.267-278
    • /
    • 2010
  • To improve the grout penetration characteristics, vibration method was adopted in this study. The grout material perturbed by cyclic vibration is injected into the ground. By applying the vibrating flow system, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibration grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at low grouting pressure of less than 400kPa.

  • PDF

Enhancement of the Technique for Analyzing a Pile Driven by Vibro Hammer (진동해머에 의해 시공되는 말뚝의 해석기법 제고)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3596-3601
    • /
    • 2015
  • Enhancement of the existing program for analyzing a pile driven by vibro hammer was tried. Damping effect of dynamic soil resistance and clutch friction were added to the existing governing equation which constitute vibrating system of vibro hammer-pile-soil. Parameters of the modified Ramberg-Osgood model which simulates dynamic load transfer curves for the developed program were recomputed. Comparing the results of the modified program with those of the field tests, pile displacement with time and load transfer behavior were more similar to those of the field test. The penetration rates obtained from the modified program were more close to those of the field test rather than those of the commertical program.

Transdermal Penetration of Synthetic Peptides and Their Penetration Enhancement Caused by Some Terpene Compounds

  • Ham, Seung-Wook;Kang, Myung-Joo;Park, Young-Mi;Oh, Il-Young;Kim, Bo-Gyun;Im, Tae-Jong;Kim, Sung-Hee;Choi, Young-Wook;Lee, Jae-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1535-1538
    • /
    • 2007
  • The work presented in this paper represents a study of the rate and extent of transdermal penetration of three synthetic hexapeptides consisting only of glycine (Gly) and phenylalanine (Phe) as the constituent amino acids and they include Phe-Gly-Gly-Gly-Gly-Gly (Pep-1), Phe-Phe-Gly-Gly-Gly-Gly (Pep-2), and Phe-Phe-Phe- Gly-Gly-Gly (Pep-3). The present study demonstrated the extent to which the peptides having a high metabolic stability were transdermally transported from the various vehicles. The results of this study appear to indicate that minor differences in the lipophilicity of the synthetic hexapeptides have a slight influence on the rate and extent of transport. In the presence of terpene permeation enhancers, together with ethanol (i.e., menthone/ EtOH, carveol/EtOH or cineole/EtOH), the peptides were more rapidly penetrated through the skin and among the terpenes tested, cineole was the most effective for all three peptides. The maximum enhancement ratio of approximately 2 was achieved by cineole in 50% ethanol solution.

Effect of Vehicles and Enhancers on the in vitro Skin Penetration of Aspalatone and Its Enzymatic Degradation Across Rat Skins

  • Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.572-577
    • /
    • 2001
  • The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this studys hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PC that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PC concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped currie. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate > serosal extract > epidermal extract. Estimated first order degradation rate constants were $6.15{\pm}0.14,{\;}0.57{\pm}0.02{\;}and{\;}0.011{\pm}{\;}0.004{\;}h^{-1}$ for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PC and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be nervessary to fully realize the transdermal delivery of the drug.

  • PDF