Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01788

Experimental Investigation of Electrochemical Corrosion and Chloride Penetration of Concrete Incorporating Colloidal Nanosilica and Silica Fume  

Garg, Rishav (Galgotias College of Engineering & Technology)
Garg, Rajni (Rayat Bahra University)
Singla, Sandeep (RIMT University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 440-452 More about this Journal
Abstract
Enhancement of durability and reduction of maintenance cost of concrete, with the implementation of various approaches, has always been a matter of concern to researchers. The integration of pozzolans as a substitute for cement into the concrete is one of the most desirable technique. Silica fume (SF) and colloidal nanosilica (CS) have received a great deal of interest from researchers with their significant performance in improving the durability of concrete. The synergistic role of the micro and nano-silica particles in improving the main characteristics of cemented materials needs to be investigated. This work aims to examine the utility of partial substitution of cement by SF and CS in binary and ternary blends in the improvement of the durability characteristics linked to resistance for electrochemical corrosion using electrical resistivity and half-cell potential analysis and chloride penetration trough rapid chloride penetration test. Furthermore, the effects of this silica mixture on the compressive strength of concrete under normal and aggressive environment have also been investigated. Based on the maximum compression strength of the concrete, the optimal cement substituent ratios have been obtained as 12% SF and 1.5% CS for binary blends. The optimal CS and SF combination mixing ratios has been obtained as 1.0% and 12% respectively for ternary blends. The ternary blends with substitution of cement by optimal percentage of CS and SF exhibited decreased rate for electrochemical corrosion. The strength and durability studies were found in consistence with the microstructural analysis signifying the beneficiary role of CS and SF in upgrading the performance of concrete.
Keywords
Corrosion; Electrical Resistivity; Half-Cell Potential; Strength; Chloride Penetration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Leemann, P. Nygaard, J. Kaufmann, R. Loser, Cem Concr Compos, 2015, 62, 33-43.   DOI
2 J.H.M. Visser, Heron, 2012, 57(3), 231-247.
3 V.G. Papadakis, Cem Concr Res, 2000, 30(2), 291-299.   DOI
4 B.S. Dhanya, S. Rathnarajan, M. Santhanam, R.G. Pillai, R. Gettu, Indian Concr J, 2019, 93(4), 10-21.
5 S. Rukzon, P. Chindaprasirt, Indoor Built Environ, 2009, 18(4), 313-318.   DOI
6 L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, J.A. Labrincha, Adv Appl Ceram, 2010, 109(2), 104-110.   DOI
7 L.G. Li, Z.H. Huang, J. Zhu, A.K.H. Kwan, H.Y. Chen, Constr Build Mater, 2017, 140, 229-238.   DOI
8 L.G. Li, J. Zhu, Z.H. Huang, A.K.H. Kwan, L.J. Li, Constr Build Mater, 2017, 140, 229-238.   DOI
9 A. Agarwal, S. Bhusnur, T. Shanmuga Priya, Mater Today Proc, 2019, 22, 1433-1442.
10 L. Qin, X. Gao, Fuel, 2019, 245, 1-12.   DOI
11 O. Cizer, K. Van Balen, D. Van Gemert, J. Elsen, Sustain Constr Mater Technol - Int Conf Sustain Constr Mater Technol, 2007, 611-621.
12 Atta-ur-Rehman, A. Qudoos, S.H. Jakhrani, H.G. Kim, J.-S. Ryou, Int J Concr Struct Mater, 2019, 13(1), 35.   DOI
13 R. Garg, M. Bansal, Y. Aggarwal, IJERT, 2016, 5(04), 16-19.
14 D. Han, H. Kim, J Asian Archit Build Eng, 2020, 19(4), 305-314.   DOI
15 E. Mohseni, W. Tang, S. Wang, Molecules, 2019, 24(7), 1360-1376.   DOI
16 M.E.S.I. Saraya, Constr Build Mater, 2014, 72, 104-112.   DOI
17 I. Ismail, S.A. Bernal, J.L. Provis, R. San Nicolas, D.G. Brice, A.R. Kilcullen, S. Hamdan, J.S.J. Van Deventer, Constr Build Mater, 2013, 48, 1187-1201.   DOI
18 C. Zhuang, Y. Chen, Nanotechnol Rev, 2020, 8(1), 562-572.   DOI
19 T.A. Tawfik, M.A. El-Yamani, S. Abd El-Aleem, A. Serag Gabr, G.M. Abd El-Hafez, Asian J Civ Eng, 2019, 20(1), 135-147.   DOI
20 R. Puente-Ornelas, L.C. Guerrero, G.F.-S. Miguel, E.A. Rodriguez, A. Trujillo-Alvarez, H.E. Rivas-Lozano, H.M. Delgadillo-Guerra, Int J Electrochem Sci, 2016, 11, 277-290.
21 X. Zhang, X. Du, X. Zhao, Z. Zhou, X. Cheng, J Mater Civ Eng, 2019, 31(6), 04019073-9.   DOI
22 M.M. Khotbehsara, E. Mohseni, M.A. Yazdi, P. Sarker, M.M. Ranjbar, Constr Build Mater, 2015, 94, 758-766.   DOI
23 E. Mohseni, B.M. Miyandehi, J. Yang, M.A. Yazdi, Constr Build Mater, 2015, 84, 331-340.   DOI
24 S. Haruehansapong, T. Pulngern, S. Chucheepsakul, Constr Build Mater, 2014, 50, 471-477.   DOI
25 L. Wang, D. Zheng, S. Zhang, H. Cui, D. Li, Nanomaterials, 2016, 6(12), 241.   DOI
26 T. Gupta, S. Chaudhary, R.K. Sharma, Constr Build Mater, 2014, 73, 562-574.   DOI
27 R. Madandoust, E. Mohseni, S.Y. Mousavi, M. Namnevis, Constr Build Mater, 2015, 86, 44-50.   DOI
28 R. Garg, R. Garg, M. Bansal, Y. Aggarwal, Mater Today Proc, 2020, 43, 769-777.
29 L. Sadowski, Sci World J, 2013, 2013.
30 C. Hu, Y. Han, Y. Gao, Y. Zhang, Z. Li, Mater Charact, 2014, 95, 129-139.   DOI
31 R. Garg, R. Garg, Mater Today Proc, 2021, 43, 778-783.   DOI
32 T. Gupta, S. Siddique, R.K. Sharma, S. Chaudhary, Struct Concr, 2020, 1-13.
33 J.C. Arenas-Piedrahita, P. Montes-Garcia, J.M. Mendoza-Rangel, H.Z. Lopez Calvo, P.L. ValdezTamez, J. Martinez-Reyes, Constr Build Mater, 2016, 105, 69-81.   DOI
34 R. Garg, M. Bansal, Y. Aggarwal, Int J Electrochem Sci, 2016, 11(5), 3697-3713.