• Title/Summary/Keyword: Pendulum Test

Search Result 125, Processing Time 0.023 seconds

A Study on the Application of Friction Pendulum System in Main Control Room of Nuclear Power Plant (마찰진자를 이용한 면진장치의 원전 주 제어실 적용에 관한 연구)

  • Kim, Woo Bum;Lee, Kyung Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.407-417
    • /
    • 2005
  • An experimental and analytical study was performed to apply the friction pendulum system (FPS) to the main control room of a nuclear power plant. A friction pendulum bearing was fabricated, and the dynamic response of the bearing was evaluated. A partial model of a main control room attached to the FPS was tested on the shake table. The model consisted of a cabinet, a $3m\times3m$ access floor, and four friction pendulum bearings. The artificial time history based on the floor response spectrum of the main control room was used as the earthquake input signal in the test. Comparisons between the analytical study and the experimental study were conducted to verify the results and to extend the experimental study to the range of parameters that could not be experimentally studied.

Study on the cycloidal pendulumn as a method to test the isochronism of a pendulumn (진자의 등시성 확인 실험을 위한 사이클로이드 진자의 활용 방안 연구)

  • Kim, Ji-Yeon;Choi, Ho-Meoyng
    • Journal of Science Education
    • /
    • v.32 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • We investigated 8th grade science textbooks and their instructor's manuals treating the ideal condition for isochronism of a simple pendulum. The isochronism, i.e. the period is independent of amplitude, is satisfied only if the amplitude is very small. This is so called "ideal condition" for isochronism of a simple pendulum. Most textbooks and instructor's manuals are found not to state this ideal condition properly, which often leads to the deviation between experimental data and theoretical calculation. This difference between theoretical and experimental results makes students to create a sense of alienation from the real world and eventually keeps them away from physics. We thus study the cycloidal pendulum as an alternative method to test the isochronism regardless of amplitude and discuss the practical utility of it in class.

  • PDF

Development of a Human Motion Analyzer (인체 동작 분석기의 개발)

  • 김민기;김성호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.217-222
    • /
    • 1995
  • We propose some applications of image processing techniques to extract quantitative measurements by using a camera system developed in Korea university and Catholic Medical School. From now on the system will be called as KCMOTION. The purpose of this study is to provide basic kinematic and kinetic data for the analysis of human movements and to find the clinical usefulness and reliability of the proposed motion analysis system. Two tests, sit-to-stand (STS) movements and pendulum test, are conducted by the system. The aims of the tests are to identify variability and reliability of KCMOTION to give some quantitative comparisons to the other systems. The result of STS movement are compared to the LOCUS IIID motion analyzer by the ratio of maximum flexion movement per body weight to the actual maximum flexion extension torque per body weight. That result in 29 % and 33 % for hip and knee joint, respectively in KCMOTION and 27 % and 30 % in LOCUS IIID System. The results of the pendulum movements are compared to that of using Cybex and Electrogoniometer with relaxation index, amplitude ratio, swing number and swing time. The results of relaxation index and amplitude ratio of the KCMOTION are between those of the Cybex and Electrogoniometer. We also observed that the KCMOTION detect more natural movement, from the results of swing number and time.

  • PDF

A Sea-Trial Test of a Pendulum-type Mass Driving Anti-Rolling System for Small Ships (소형 선박용 진자식 횡동요 저감장치의 실선시험)

  • 문석준;박찬일;정종안;김병인;윤현규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.438-441
    • /
    • 2004
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MD-ARS) might be one candidate of several systems against the ship's rolling. In this paper, a sea-trial test on a pendulum-type MD-ARS passively operated is carried out in Suyoung, Busan. After the system is installed on the cabin of the small leisure boat, a series of test is conducted before and after operating the system. Through the test, it is confirmed that the roll rate of the ship is pretty well reduced by the system.

  • PDF

Influence of Cognitive Conflict Strategy Through Swing Experience on the Students' Conception of Force on a Simple Pendulum (그네타기 체험을 통한 인지갈등 전략이 학생들의 단진자에 작용하는 힘 개념에 미치는 영향)

  • Kwon, Mi-Rang;Kim, Ji-Na;Choi, Hyuk-Joon;Kim, Jung-Bog;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.5
    • /
    • pp.583-594
    • /
    • 2005
  • This study examined 8th-graders' conceptions of force on a simple pendulum and investigated cognitive conflict and conceptual change through kinesthetic experience in swing. Participants of this study were guided to anticipate the direction of total force acting on a pendulum at three critical positions and observed it through swing experience. Having completed this, students read an article explaining the results they observed. Most of them considered gravity, tension, and motion-force to be the real forces acting on a pendulum in pre-test. Though they were interested in the activity and conceded their expectations to be different from observed results, the degrees of their cognitive conflict were not significantly high. In summation, 'interest' was the highest and 'anxiety' was the lowest. Most of the students memorized the direction of forces on a swing, but few could explain the reason behind the occurrence in an immediate post-test and delayed post-test.

Correlations Among Objective Measurements of Spasticity in Patients With Brain Lesions

  • Kim, Yong-Wook
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • The purpose of this study was to investigate correlations among objective measurements of spasticity in patients with brain lesions. Thirty-two stroke and traumatic brain injury subjects participated in the study. Spasticity was quantified using the knee first flexion angle, relaxation index obtained from a pendulum drop test, and the amplitude of a knee tendon reflex test. Pearson's product correlation coefficient was used to examine relationships among these measurements of spasticity. There was a significant positive correlation between the relaxation index and knee first flexion angle in patients with brain lesions (r=.895, p<.01). There was also significant negative correlation between the amplitude of knee tendon reflex and relaxation index (r=-.612, p<.01), and between amplitude and knee first flexion angle (r=-.537, p<.01). Thus, it is possible to use the knee first flexion angle as an objective measure of spasticity, rather than relaxation index, which is more complicated to obtain. Further studies are needed to explore the effects of functional improvement and long-lasting carryover effects of spasticity using a simple objective measure such as the knee first flexion angle from a pendulum test.

  • PDF

A Shaking Table Test of Small Isolation System Considering the Floor Response (층응답을 고려한 소형면진장치의 진동대실험)

  • Kim, Min-Kyu;Choun, Young-Sun;Lee, Kyung-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

Analysis of the Dynamic Behavior of Guardrail Posts in Sloping Ground using LS-DYNA (LS-DYNA를 이용한 비탈면에 설치된 가드레일 지주의 동적거동)

  • LEE, Dong Woo;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • PURPOSES : This paper presents a finite element model to accurately represent the soil-post interaction of single guardrail posts in sloping ground. In this study, the maximum lateral resistance of a guardrail post has been investigated under static and dynamic loadings, with respect given to several parameters including post shape, embedment depth, ground inclination, and embedment location of the steel post. METHODS : Because current analytical methods applied to horizontal ground, including Winkler's elastic spring model and the p-y curve method, cannot be directly applied to sloping ground, it is necessary to seek an alternative 3-D finite element model. For this purpose, a 3D FHWA soil model for road-base soils, as constructed using LS-DYNA, has been adopted to estimate the dynamic behavior of single guardrail posts using the pendulum drop test. RESULTS : For a laterally loaded guardrail post near slopes under static and dynamic loadings, the maximum lateral resistance of a guardrail post has been found to be reduced by approximately 12% and 13% relative to the static analysis and pendulum testing, respectively, due to the effects of ground inclination. CONCLUSIONS : It is expected that the proposed soil material model can be applied to guardrail systems installed near slopes.

The Fall Impact test for Extraction of Optimal Stacking Section of Composite Safety Barrier for Bridge (복합소재 교량용 방호울타리의 최적 적층 단면 도출을 위한 낙하 충돌시험)

  • Hong, Kab-Eui;Jeon, Shin-Youl;Kim, Kee-Seung;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • In this study the optimal stacking section was selected by pendulum impact test for six different stacking sections of the composite safety barrier. The beam cross-section shape was determined through the poll on six different beam cross-section shapes. The six kinds of stacking design for the determined beam cross-section were suggested. CSM, DB, DBT and Roving fibers were used for stacking design. Horizontal beam and 3:1 sloped beam were modeled by using LS-DYNA. The fall impact simulation was carried out by using rectangular pendulum and cylinder pendulum. Optimal stacking section was determined by comparing and analyzing the impact simulation results.

Development of a General Purpose PID Motion Controller Using a Field Programmable Gate Array

  • Kim, Sung-Su;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.360-365
    • /
    • 2003
  • In this paper, we have developed a general purpose motion controller using an FPGA(Field Programmable Gate Array). The multi-PID controllers on a single chip are implemented as a system-on-chip for multi-axis motion control. We also develop a PC GUI for an efficient interface control. Comparing with the commercial motion controller LM 629 it has multi-independent PID controllers so that it has several advantages such as space effectiveness, low cost and lower power consumption. In order to test the performance of the proposed controller, robot finger is controlled. The robot finger has three fingers with 2 joints each. Finger movements show that position tracking was very effective. Another experiment of balancing an inverted pendulum on a cart has been conducted to show the generality of the proposed FPGA PID controller. The controller has well maintained the balance of the pendulum.

  • PDF