

복합소재 교량용 방호울타리의 최적 적층 단면 도출을 위한 낙하 충돌시험 The Fall Impact test for Extraction of Optimal Stacking Section of Composite Safety Barrier for Bridge

홍갑의 Hong, Kab-Eui*† · 전신열 Jeon, Shin-Youl** · 김기승 Kim, Kee-Seung** · 김승억 Kim, Seung-Eock***

(Received January 7, 2011; Revised February 10, 2011; Accepted March 17, 2011)

ABSTRACT

In this study the optimal stacking section was selected by pendulum impact test for six different stacking sections of the composite safety barrier. The beam cross-section shape was determined through the poll on six different beam cross-section shapes. The six kinds of stacking design for the determined beam cross-section were suggested. CSM, DB, DBT and Roving fibers were used for stacking design. Horizontal beam and 3:1 sloped beam were modeled by using LS-DYNA. The fall impact simulation was carried out by using rectangular pendulum and cylinder pendulum. Optimal stacking section was determined by comparing and analyzing the impact simulation results.

본 논문에서는 복합소재 방호울타리의 6가지 적층 단면에 대한 충돌시뮬레이션을 실시하여 최적 적층 단면을 결정하 였다. 먼저 6가지 단면 형상에 대하여 설문 조사를 통하여 형상을 결정하였다. 결정된 보 단면에 대하여 6가지 적 층설계를 하였다. 적층에는 CSM, DB, DBT, Roving 섬유를 사용하였다. LS-DYNA를 사용하여 수평 및 3:1 경사에 대한 복합소재 보를 모델링하였다. 직육면체 추 및 원통형 추를 사용하여 낙하 충돌 시뮬레이션을 실시하였다. 시뮬레이 션결과를 비교 분석하여 최적 적층 단면을 도출하였다.

Key Words:: Composite Material(복합소재), Safety Barrier for Bridge(교량용 방호울타리), Stacking Design(적층 설계), Impact Simulation(충돌 시뮬레이션)

1. 서 론

첨단 복합소재 교량용 방호울타리 개발 계획서(2010)에 따 르면 콘크리트 및 강재 방호울타리의 경우는 강도와 강성 은 우수하나 소형 차량 충돌 시 충돌 흡수 능력이 떨어지 는 경향이 있다. 또한 알루미늄 방호울타리의 경우는 충격 흡수 능력은 우수하나 강도가 떨어지는 경향이 있다. 반면 복합소재 교량용 방호울타리는 강도는 크고 강성은 작아서 인명 피해를 최소화 할 수 있는 이상적인 방호울타리이다.

복합소재 방호울타리의 충돌 시뮬레이션에 대한 연구는 극히 제한적이다. Davids등(2006)은 실험과 충돌 시뮬레이 션을 통해 FRP보강목재 방호울타리를 비교 연구하였다. 김 승억과 조판규(2009)는 컴퓨터 시뮬레이션을 활용하여 강 재 방호울타리와 복합소재 방호울타리의 성능을 비교 평가 함으로써 복합소재 방호울타리의 우수한 성능을 입증하였 다. 본 논문에서는 적층 사양에 따라 단면 성능이 상이한 복합소재에 대하여 시뮬레이션을 실시하였다. 이로써 다양 한 적층설계에 따른 단면의 성능을 평가하였다.

방호울타리의 성능을 평가하기 위해서는 실물충돌시험을 수행하여야 한다. 이 경우 금형 제작, 시험체 제작, 차량 구입 및 측정 등 비용과 시간이 과대하게 소요된다. 유한 요소 기법을 활용한 컴퓨터 시뮬레이션을 실시하면 시험체 제작에 소요되는 비용과 시간을 최소화할 수 있어 매우 효 과적이다.

따라서 본 논문에서는 다양하게 적층된 단면들에 대하여 충돌시뮬레이션을 실시하여 최적의 적층 단면을 도출하였

2. 복합소재 방호울타리 제원

^{**} 학생회원·세종대학교 토목환경공학과 석사과정, 교신저자(hongaby@nate.com)

^{**} 학생회원·세종대학교 토목환경공학과 석사과정

^{***}정회원 ㆍ세종대학교 토목환경공학과 교수

복합소재 보의 디자인 및 제작 여건을 고려하여 Fig. 1 과 같이 6가지의 보 단면형상을 고안하였다.

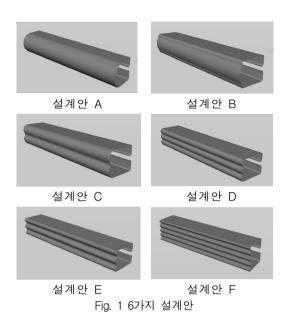
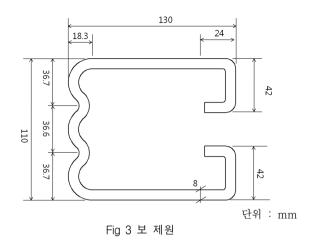



Fig. 1에 제시된 6가지 단면에 대하여 설문 조사를 통해 설계안D를 가장 우수한 보 단면형상으로 채택하였다. 채택 안에 대하여 전면 및 후면에서의 투시도를 Fig. 2에 나타 내었다.

Fig. 3은 선정된 보 단면에 대한 제원을 나타내었다. 단 위는 mm이다.

3. 복합소재 교량용 방호울타리 보의 적층설계

3.1 복합소재 섬유

복합재료의 가장 큰 장점중의 하나는 섬유배열을 통해 부재의 물성을 사용자의 요구대로 설계(tailoring design) 할 수 있다는 것이다. 부재 단면설계에는 CSM(Continuous Mat), 로빙(roving), DBT(Double Strand Transversal), DB(Double Bias) 등이 사용되어진다. CSM은 연속한 가닥(Strand)을 방향성 없이 고르게 분포한 후 폴 리에스터 분말(polyester powder)을 접착제로 사용하여 압 착된 부직포 형태로 제작된다. 로빙은 섬유직경이 10-20 μm 의 필라멘트(filament)를 수백에서 수천가닥을 집속 하여 용도에 맞게 소정의 번수(tex)를 균일하게 롤(roll) 상태로 만든 것이다. DBT는 섬유의 방향이 세 방향의 형태 로 이루어져있는 직물이며 DB는 섬유의 방향이 두 방향의 형태로 이루어져있는 직물이다. 섬유의 구성 및 오리엔테 이션은 다음 Table 1과 같다.

Table 1 섬유의 구성 및 오리엔테이션

섬유	형상	Orientation	비고	
CSM		Random	다방향	
Roving		0 °	1축방향	
DBT		+45 ° -45 ° 90 °	3축 방향	
DB		+45 ° -45 °	2축 방향	

3.2 섬유의 역학적 성질

Table 2에서는 폴리우레탄 수지와 유리섬유로 적층된 복 합소재 재료의 물성치를 나타내었다. 폴리우레탄 수지와 함침된 Roving, DB, DBT 및 CSM 섬유의 물성치는 RSI Urethane Resin Material Property Summary Report (2004) 를 참고하였다.

Table 2 Roving, DB, DBT 및 CSM의 물성치

구분	$E_x \ (\mathit{GPa})$	E_{y} (GPa)	G_{xy} (GPa)	X_t (MPa)
DB, DBT Roving	53.4	14.1	2.749	1160
CSM	28.619	28.619	10.500	621.68
구분	$egin{aligned} X_c \ (M\!P\!a) \end{aligned}$	$egin{array}{c} Y_t \ (M\!P\!a) \end{array}$	$egin{array}{c} Y_c \ (M\!P\!a) \end{array}$	S (MPa)
DB, DBT Roving	586	37.3	106	64.1
CSM	314.06	621.68	314.06	34.35

여기서, E_x :x방향 탄성계수, E_y :y방향 탄성계수 G_{xy} :전단탄성계수, X_t :x방향 인장강도, X_c :x방향 압축강도, $Y_{*}:y$ 방향 인장강도, $Y_{*}:y$ 방향 압축강도, S: 전단강도

3.3 적층설계

교량용 방호울타리 보는 주부재력이 길이 방향으로 발생 하므로 길이방향 로빙을 최대한 많이 배치하기 위하여 세 층으로 설계하였다. 로빙층의 두께는 전체 복합소재 두께 의 73% ~ 87%를 차지한다. 부재 단면 방향 응력에 저항하 기 위하여 섬유의 방향이 두 방향으로 이루어진 DB 직물 또는 섬유 방향이 세 방향으로 이루어진 DBT 직물을 사용 하였다. CSM은 부재 표면에 위치하여 적층간 완충작용을 할 수 있도록 하였다.

CSM, Roving, DBT, DB 섬유를 사용하여 다음 Fig. 4와 같이 6가지 적충설계 안을 제시하였다.

적층순서	두께(mm)	적층순서	두께(mm)
CSM 450	0.305	CSM 450	0.305
Roving #4400	2.3278	Roving #4400	2.2826
DBT 300	0.2033	DB 400	0.2711
Roving #4400	2.3278	Roving #4400	2.2826
DBT 300	0.2033	DB 400	0.2711
Roving #4400	2.3278	Roving #4400	2.2826
CSM 450	0.305	CSM 450	0.305
합	계 8mm	합계	8mm

적층설계A 적층설계B

적층순서	두께(mm)	 적층순서	두께(mm)	
CSM 450	0.305	CSM 450	0.305	
Roving #4400	2.1019	Roving #4400	2.1019	
DB 800	0.5422	DBT 800	0.5422	
Roving #4400	2.1019	Roving #4400	2.1019	
DB 800	0.5422	DBT 800	0.5422	
Roving #4400	2.1019	Roving #4400	2.1019	
CSM 450	0.305	CSM 450	0.305	
합기	al 8mm	합기	ll 8mm	
적층설계C		적층설계D		
	두께(mm)	 적층순서	두께(mm)	
	두께(mm) 0.5422	적층순서 DBT 800	두께(mm) 0.5422	
적층순서				
적층순서 DB 800	0.5422	DBT 800	0.5422	
적층순서 DB 800 Roving #4400	0.5422 1.9437	DBT 800 Roving #4400	0.5422 1.9437	
적층순서 DB 800 Roving #4400 DB 800	0.5422 1.9437 0.5422	DBT 800 Roving #4400 DBT 800	0.5422 1.9437 0.5422	
적층순서 DB 800 Roving #4400 DB 800 Roving #4400	0.5422 1.9437 0.5422 1.9437	DBT 800 Roving #4400 DBT 800 Roving #4400	0.5422 1.9437 0.5422 1.9437	
적층순서 DB 800 Roving #4400 DB 800 Roving #4400 DB 800	0.5422 1.9437 0.5422 1.9437 0.5422	DBT 800 Roving #4400 DBT 800 Roving #4400 DBT 800	0.5422 1.9437 0.5422 1.9437 0.5422	
적층순서 DB 800 Roving #4400 DB 800 Roving #4400 DB 800 Roving #4400	0.5422 1.9437 0.5422 1.9437 0.5422 1.9437 0.5422	DBT 800 Roving #4400 DBT 800 Roving #4400 DBT 800 Roving #4400	0.5422 1.9437 0.5422 1.9437 0.5422 1.9437 0.5422	

Fig. 4 적층설계 안

4. 충돌 시뮬레이션

4.1 사용 프로그램의 선정

LS-DYNA는 전 세계적으로 가장 널리 사용되는 범용 비선 형 유한 요소 프로그램으로 3차원 구조물의 비선형, 동적 거동 해석에 탁월한 기능을 제공 하고 있다. 또한 부재간 경계조건에 사용되는 완전 자동 접촉 알고리즘은 다른 프 로그램에 비해 월등히 우수하다.

LS-DYNA는 1970년대 저속 충돌 문제를 해석하기위해 LLNL (Lawrence Livermore National Laboratory) 에서 개 발된 것으로서 1980년 후반 LSTC사의 설립과 함께 다양한 접촉 문제의 해석 결과 충돌해석 분야의 광범위한 적용 등 을 통해 안정성이 입증된 프로그램이며 특히 방호울타리 모델링에 용이한 요소 들을 가지고 있다.

4.2 모델링

4.2.1 복합소재 보

길이 6m인 복합소재 보를 쉘 요소로 모델링하였다. 사용 요소 수는 6,120개이다. LS-DYNA 라이브러리에서 제공되는 복합소재 재료모델은 MAT 22, MAT55, MAT 58, MAT 59, MAT 116, MAT 117, MAT 118, MAT 161등 여러 가지가 있다. 방 호울타리 보에 사용되는 복합소재는 방향별로 적층된 것으 로써 이에 가장 적합한 MAT 58 (MAT _LAMINATED _COMPOSITE _FABRIC)을 사용하였다. 보의 접촉 조건으로 AUTO-SURFACE-TO-SURFACE 옵션을 사용하였다. 복합소재 보 의 모델링은 Fig. 5와 같다.

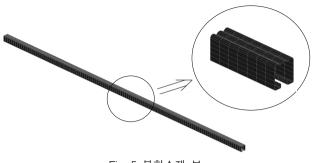


Fig. 5 복합소재 보

4.2.2 지주

낙하시험 조건을 고려하여 지주는 보를 받치는 받침판으 로 모델링하였다. 받침판은 수평보를 받치는 수평 받침판 과 3:1 경사로 기울어진 보를 받치는 경사 받침판으로 모 델링하였다. 받침판의 모델링을 Fig. 6에 나타내었다. 방 호울타리 보는 2m의 받침판에 결합된다. 받침판의 바닥은 변위 및 회전에 대하여 구속하였다. 수평 보 및 3:1경사 보의 모델링은 Fig. 7-8과 같다.

Fig. 6 받침판 모델링

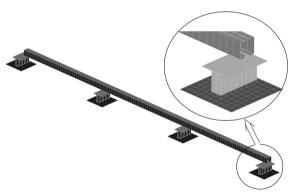


Fig. 7 수평 보 모델링

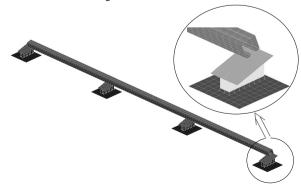


Fig. 8 경사 보 모델링

4.2.3 낙하 추

낙하 추는 직육면체 및 원통형의 2가지 경우를 사용하였 으며 솔리드 요소를 사용해 모델링하였다. 직육면체 추는 정면 및 3:1 경사로 설치된 보에 충돌된다. 3:1 경사는 AASHTO LRFD Bridge Design Specifications(2004)의 Table A13.2-1-Design Forces for Traffic Railings를 참고하였 다. 원통형 추는 실물충돌시험과 같이 충돌각도를 15도로 하여 3:1경사로 보에 충돌하였다.

4.3 연결성 및 경계조건

받침판과 복합소재 보를 연결하기 위해서 LS-DYNA 라이 브러리에서 제공되는 SPOTWELD 옵션을 사용하였다. 받침판 바닥면을 변위 및 회전에 대하여 구속하여 지면에 고정되 어있는 것으로 가정하였다.

4.4 충돌조건

SB4급 방호울타리의 경우 강도성능 평가 시 65km/hr의 속도로 15° 각도에서 충돌하는데 직육면체 추의 낙하 충돌 시뮬레이션에서는 다음 Fig. 9와 같이 수직으로 충돌한다. 이를 고려한 충돌 속도를 계산하면 차량의 충돌 속도 65km/hr에 sin15°를 곱하여 4.67m/s가 된다. 충돌하는 추 의 무게를 결정하기위해 기존에 실시한 강재 방호울타리에 대한 실물충돌시험 결과를 활용하였다. SB4급 방호울타리 의 실물충돌시험 결과에서 강재 방호울타리의 변형량은 최 대 3cm였다. 속도 4.6m/s의 직육면체 추가 강재 방호울타 리에 충돌하는 경우의 충돌시뮬레이션을 실시하여 강재 보 의 변형량이 3cm가 발생하는 직육면체 추의 질량을 결정하 였다. 결정된 직육면체 추의 질량은 558.9kg이었다.

원통형 추는 방호울타리의 실물충돌시험과 같은 15° 각 도에서 충돌하기 때문에 충돌 속도는 65km/hr로 하였다. 원통형 추가 강재 방호울타리에 충돌하는 경우의 충돌시뮬 레이션을 실시하여 강재 보의 변형량이 3cm가 발생하는 원 통형 추의 질량을 결정하였다. 결정된 원통형 추의 질량은 99.1kg이었다. 원통형 추는 AASHTO LRFD Bridge Design Specifications(2004)에 나와있는 Table A13.2-1-Design Forces for Traffic Railings를 참고하여 3:1 경사로 충돌 시켰다.

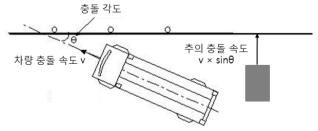


Fig 9. 실차 및 직육면체 추의 충돌 방향 및 속도

다음 Fig. 10-11은 직육면체 추와 보의 정면 충돌 방향 을 나타내었으며 Fig. 12-13은 직육면체 추와 보의 3:1 경 사 충돌 방향을 나타내었다. Fig. 14-16은 원통형 추와 보

의 충돌 방향을 나타내었다.

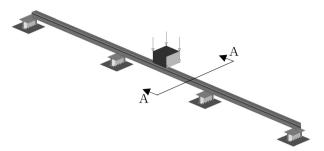


Fig. 10 직육면체 추의 정면 낙하 시험

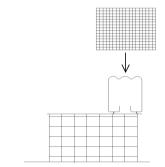


Fig. 11. 직육면체 추 정면 낙하 시험의 A-A 단면

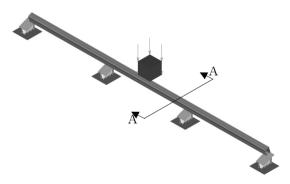


Fig. 12. 직육면체 추의 3:1 경사 낙하 시험

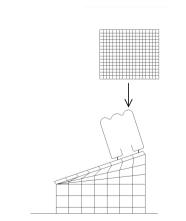


Fig. 13. 직육면체 추 3:1 경사 낙하 시험의 A-A 단면

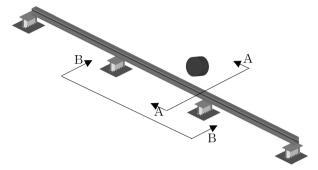


Fig. 14. 원통형 추의 낙하 시험

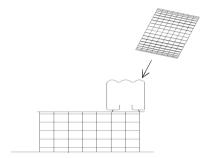


Fig. 15. 원통형 추 낙하 시험의 A-A 단면

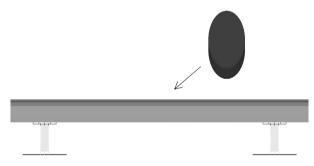


Fig. 16. 원통형 추 낙하 시험의 B-B 단면

4.5 충돌 시뮬레이션 결과

6 가지 적층설계에 대한 복합소재 보의 충돌 변위는 직 육면체 추가 정면 충돌 시 최대 100mm에서 최소 69mm까지 나타났으며 탄성 회복하여 잔류 변형은 없었다. 직육면체 추가 3:1 경사 충돌 시 변위가 최대 132mm에서 최소 79mm 까지 나타났다. 원통형 추가 충돌 시 최대 36mm에서 최소 24mm까지 나타났으며 탄성 회복하여 잔류 변형은 없었다. 적층에 따른 최대 변형량을 정리하면 다음 Table 3과 같 다.

Table 3 충돌 후 최대 변형량

구분	적층	적층	적층	적층	적층	적층
	설계A	설계B	설계C	설계D	설계E	설계F
직육면체	1000000	1000000	00000	70	70	£0,000
추-정면	100mm	100mm	83(1)(1)	79mm	70mm	69mm
직육면체	1200000	10/10000	115,000	1000000	OGmm	79mm
추-3:1경사	13211111	124mm	ПЭПП	10011111	9011111	/9000
원통형	32mm	36mm	30mm	29mm	27mm	24mm
추	اااالعد	3011111	3011111	2911111	2/11 1 11	24

6가지 적층단면은 잔류변형이 30cm를 넘지 않았고 부채 가 파단 되지 않아 차량방호 안전시설 실물충돌시험 업무 편람(2001)의 강도기준을 만족하였다. 적충설계A와 적충설 계F의 시간에 따른 변위는 Fig. 17-19와 같다.

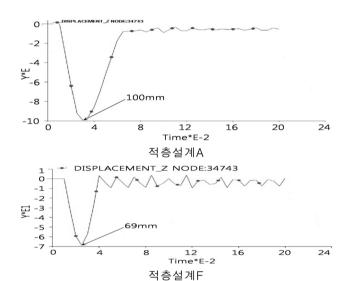


Fig. 17 직육면체 추와 정면 충돌 후 시간에 따른 변위

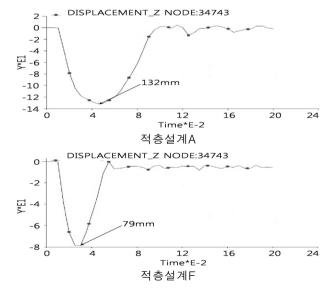


Fig. 18 직육면체 추와 3:1 경사 충돌 후 시간에 따른 변위

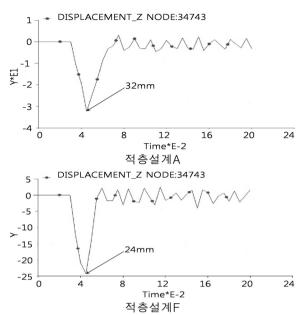


Fig. 19 원통형 추와 충돌 후 시간에 따른 변위

충돌 후 단면의 변형 형상에 있어서 적충설계E가 적충설 계A, B, C, D, F 단면보다 비교적 형상을 잘 유지하였다. 적층설계A, B, C, D, E, F에 대한 충돌 후 단면의 변형 형 상은 다음 Fig. 20-22와 같다.

Fig. 20 직육면체 추와 정면 충돌 후 단면의 변형 형상

적층설계D 적층설계E 적층설계F Fig. 21 직육면체 추와 3:1 경사 충돌 후 단면의 변형 형상

Fig. 22 원통형 추와 충돌 후 단면의 변형 형상

Fig. 18에서 충돌 후 단면의 변형 형상이 비대칭인 것은 복합소재 보가 강재 받침판 중앙에 결합되어 있지 않고 한 쪽으로 편심되어 결합되어있기 때문이다. 여기서 적충설계 E, F 단면의 변형 형상이 대칭인 것은 단면의 강성이 충분 이 커서 편심되어 연결된 강재 받침판의 영향을 받지 않기 때문이다. 반면 적층설계A, B, C, D 단면은 강성이 중간정 도로써 강재 받침판과 복합소재 보의 상호작용이 일어나 단면의 변형 형상이 비대칭적으로 나타난 것으로 판단된 다.

3:1 경사로 충돌하는 경우 횡방향으로 변형량이 크게 발 생하는 것을 알 수 있었다. 6가지 적층 설계 안에서 단면 의 길이방향 섬유인 Roving이 73% ~ 87%를 차지하기 때문 에 3:1 경사 충돌 시 정면 충돌 보다 상대적으로 약한 것 으로 판단된다. 또한 Fig. 21에서 적충설계F는 다른 적충 설계 안과 달리 45도, -45도, 90도 성분의 섬유 비율이 높 아 변형 형상을 비교적 잘 유지하였다.

원통형 추로 충돌한 경우 직육면체 추가 3:1경사로 충돌 한 경우보다 횡방향 변형이 다소 작게 발생하였다. 원통형 추는 실물충돌시험과 같은 15도 각도에서 충돌하였기 때문 에 50cm 가량 보를 따라 굴러간 후에 이탈하는 거동을 보 였다.

5. 결 론

본 논문에서는 6가지 적층 단면에 대하여 복합소재 방호 울타리 보의 충돌 시뮬레이션을 수행하여 적층 단면의 성 능을 비교 평가하였으며 다음과 같은 결론을 얻었다.

첫째, 6가지 적층 단면은 충돌에 의한 변형 후 단면 형 상을 모두 회복하였다. 잔류 변형이 거의 없는 복합소재 방호울타리는 차량방호 안전시설 실물충돌 시험 업무편람 에 따른 방호울타리의 성능평가 기준을 만족한다.

둘째, 6가지 적층 단면에 대한 충돌 후 최대 변형량을 보면 직육면체 추의 정면 충돌 시 최대 100mm에서 최소 69mm를 나타냈으며 직육면체 추의 3:1 경사 충돌 시 최대 132mm에서 최소 79mm까지 나타났다. 원통형 추 충돌 시 최 대 76mm에서 최소 48mm를 나타냈다. 그중에서 적층설계F가 변형량이 가장 적어 강성이 가장 우수한 것으로 나타났다.

셋째, 직육면체 추의 3:1 경사 충돌과 원통형 추의 충돌 에서 적층F가 단면의 횡방향 변형이 가장 적은 것으로 나 타났다. 적층F 단면이 적층A, B, C, D, E 단면보다 DBT 섬 유의 함유량이 커서 횡방향 하중에 대한 강성이 우수한 것 으로 나타났다.

감사의 글

본 연구는 국토해양부 국토해양기술연구개발사업(한국건 설교통기술평가원 건설기술혁신사업)의 연구비지원(09기술 혁신B01)에 의해 수행되었습니다.

참고 문헌

- 1.건설교통부 (2001). 차량방호 안전시설 실물충돌시험 업 무편람
- 2.조판규, 김승억 (2009), 강재 방호벽에 대한 차량의 충돌 시뮬레이션, 한국전산구조공학회 2009 정기 학 술대회 논문집, pp. 175-182
- 3. 한국건설교통기술평가원 (2010), 첨단 복합소재 교 량용 방호울타리 개발 계획서, pp.2.
- 4. AASHTO (2004), LRFD Bridge Design Specifications.
- 5. Davids, W.G. Botting, J.K. and Peterson, M (2006), Development and structural testing of composite-reinforced timber highway guardrail, Construction and Building Materials, Vol.20, pp. 733-743.
- 6. Owens Corning (2009), OCV Reinforcements.
- 7. Resin System Inc. (2004), RSI Urethane Resin Material Property Summary Report.