• 제목/요약/키워드: Penalty-based Method

검색결과 201건 처리시간 0.023초

이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법 (Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables)

  • 윤기찬;최동훈
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

영역/경계 분할법을 이용한 저복 문제의 효율적인 유한요소 해석 (Efficient Finite Element Analyses of Contact Problems by Domain/Boundary Decomposition Method)

  • 류한열;신의섭
    • 한국항공우주학회지
    • /
    • 제35권5호
    • /
    • pp.404-411
    • /
    • 2007
  • 접촉 문제의 효율적인 유한요소 해석을 위하여 부영역, 공유면 및 접촉 공유면의 개념에 근거한 영역/경계 분할법을 제시하였다. 부영역과 공유면 또는 접촉 공유면을 결합하기 위한 등식 적합 조건을 벌칙 함수로 처리함으로써 모든 유효 강성 행렬이 양 정치화되므로, 역행렬과 같은 각종 행렬의 연산이 매우 간편해진다. 또한 전체 영역 형상이 복잡하더라도, 임의의 부영역으로 분할한 후 공유면에서의 절점 연속성을 고려하지 않고 각각의 부영역을 독립적으로 이산화할 수 있다. 간단한 수치 예제 해석을 통하여 본 기법의 기본적인 특성을 고찰하였다.

반응표면법을 이용한 전진비행하는 헬리콥터 로터 에어포일의 공력설계 (Aerodynamic Design of Helicopter Rotor Airfoil in Forward Flight Using Response Surface Method)

  • 선효성;이수갑
    • 한국항공우주학회지
    • /
    • 제32권7호
    • /
    • pp.13-18
    • /
    • 2004
  • 이 논문은 최적설계 기법의 적용을 통하여 전진비행하는 조건에서 헬리콥터 로터를 구성하는 에어포일의 공력성능을 향상시키는 것에 목적을 가지고 있다. 전진비행하는 로터의 유동장을 모사하는 에어포일의 동적반응에 의한 공력성능은 Navier-Stokes 방정식을 이용하여 계산되어진다. 최적설계 기법은 수리통계적인 방법에 기초하는 반응표면법과 적절한 목적함수와 제약조건의 조합을 통하여 최적점을 구해내는 유전 알고리즘으로 구성되어진다. 유동해석 방법과 설계기법의 통합을 바탕으로 공력성능이 향상된 에어포일의 형상을 구할 수 있었으며 통계학적인 방법에 기초하여 설계연구에 사용되어진 형상변수들이 공력성능에 영향을 미치는 정도를 파악할 수 있었다.

The SIMP-SRV Method for Stiffness Topology Optimization of Continuum Structures

  • Zhou, Xiangyang;Chen, Liping;Huang, Zhengdong
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.41-49
    • /
    • 2007
  • In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often relaxed with continuous design variables so that they can be solved using continuous mathematical programming. Although the relaxed methods are practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both methods cannot effectively remove all the grey areas. SRV has some numerical aspects. In this work, a new scheme SIMP-SRV is proposed by combining SIMP and SRV approaches, where SIMP is employed to generate an intermediate solution to initialize the design variables and SRV is then adopted to produce the final design. The new method turned out to be very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffness topology optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique can effectively remove all grey areas and generate stiffer optimal designs characterized with a sharper boundary in contrast to SIMP and SRV.

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

전력계통의 단기 발전계획 기원용 전문가시스템 (An Expert System for Short-Term Generation Scheduling of Electric Power Systems)

  • Yu, In-Keun
    • 대한전기학회논문지
    • /
    • 제41권8호
    • /
    • pp.831-840
    • /
    • 1992
  • This paper presents an efficient short-term generation scheduling method using a rule-based expert/consulting system approach to assist electric energy system operators and planners. The expert system approach is applied to improve the Dynamic Programming(DP) based generation scheduling algorithm. In the selection procedure of the feasible combinations of generating units at each stage, automatic consulting on the manipulation of several constraints such as the minimum up time, the minimum down time and the maximum running time constraints of generating units will be performed by the expert/consulting system. In order to maximize the solution feasibility, the aforementioned constraints are controlled by a rule-based expert system, that is, instead of imposing penalty cost to those constraint violated combinations, which sometimes may become the very reason of no existing solution, several constraints will be manipulated within their flexibilities using the rules and facts that are established by domain experts. In this paper, for the purpose of implementing the consulting of several constraints during the dynamic process of generation scheduling, an expert system named STGSCS is developed. As a building tool of the expert system, C Language Integrated Production System(CLIPS) is used. The effectiveness of the proposed algorithm has been demonstrated by applying it to a model electric energy system.

  • PDF

2차원 유체- 구조물-지반 상호작용해석 전산프로그램 (A Computer Program for 2-D Fluid-Structure-Soil Interaction Analysis)

  • 김재민
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.427-434
    • /
    • 2000
  • This paper presents a computer program for a 2-D fluid-structure-soil interaction analysis. With this computer program the fluid can be modeled by a spurious free 4-node displacement-based fluid element which uses rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and near field soil are discretized by the standard finite elements while the unbounded far field soil are discretized by the standard finite elements while the unbounded far field soil is represented by the frequency dependent dynamic infinite elements. Sine this method models directly the fluid-structure-soil system it can be applied to the dynamci analysis of 2-D liquid storage structure with complex geometry. For the purpose of verification dynamic analyses for tanks on a rigid foundation and on compliant embankment are carried out. Comparison of the present results with those by ANSYS program shows good agreement.

  • PDF

깊이 식각된 InGaAsP 광도파로로 구성된 위상 배열 파장 라우터의 평탄화 설계 (Design of Deeply Etched InGaAsP Phased-Array Wavelength Router with Flat Passband)

  • 박준오;정영철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.195-196
    • /
    • 2000
  • A passband-flattening technique based on Fourier optics concept for phased-array wavelength router is presented. For easy control of optical power in each waveguide without phase correction, misaligned array waveguides are used. BPM simulation results indicate that flat passband is as wide as 75 % of the channel spacing with the insertion loss penalty of about 6 dB and with the crosstalk of about -28 dB.

  • PDF

혼합 유전 알고리즘을 이용한 GDP/MINLP로 표현된 공정 최적화 (Process Optimization Formulated in GDP/MINLP Using Hybrid Genetic Algorithm)

  • 송상옥;장영중;김구회;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.168-175
    • /
    • 2003
  • A new algorithm based on Genetic Algorithms is proposed f3r solving process optimization problems formulated in MINLP, GDP and hybrid MINLP/GDP. This work is focused especially on the design of the Genetic Algorithm suitable to handle disjunctive programming with the same level of MINLP handling capability. Hybridization with the Simulated Annealing is experimented and many heuristics are adopted. Real and binary coded Genetic Algorithm initiates the global search in the entire search space and at every stage Simulated Annealing makes the candidates to climb up the local hills. Multi-Niche Crowding method is adopted as the multimodal function optimization technique. and the adaptation of probabilistic parameters and dynamic penalty systems are also implemented. New strategies to take the logical variables and constraints into consideration are proposed, as well. Various test problems selected from many fields of process systems engineering are tried and satisfactory results are obtained.

유전적 프로그래밍을 이용한 노이지 데이터의 Curve Fitting과 선박설계에서의 적용 (Genetic Programming Approach to Curve Fitting of Noisy Data and Its Application In Ship Design)

  • 이경호;연윤석
    • 한국CDE학회논문집
    • /
    • 제9권3호
    • /
    • pp.183-191
    • /
    • 2004
  • This paper deals with smooth curve fitting of data corrupt by noise. Most research efforts have been concentrated on employing the smoothness penalty function with the estimation of its optimal parameter in order to avoid the 'overfilling and underfitting' dilemma in noisy data fitting problems. Our approach, called DBSF(Differentiation-Based Smooth Fitting), is different from the above-mentioned method. The main idea is that optimal functions approximately estimating the derivative of noisy curve data are generated first using genetic programming, and then their integral values are evaluated and used to recover the original curve form. To show the effectiveness of this approach, DBSP is demonstrated by presenting two illustrative examples and the application of estimating the principal dimensions of bulk cargo ships in the conceptual design stage.