• Title/Summary/Keyword: Penalty-based Method

Search Result 198, Processing Time 0.031 seconds

A New Penalty Parameter Update Rule in the Augmented Lagrange Multiplier Method for Dynamic Response Optimization

  • Kim, Min-Soo;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1122-1130
    • /
    • 2000
  • Based on the value of the Lagrange multiplier and the degree of constraint activeness, a new update rule is proposed for penalty parameters of the ALM method. The theoretical exposition of this suggested update rule is presented by using the algorithmic interpretation and the geometric interpretation of the augmented Lagrangian. This interpretation shows that the penalty parameters can effect the performance of the ALM method. Also, it offers a lower limit on the penalty parameters that makes the augmented Lagrangian to be bounded. This lower limit forms the backbone of the proposed update rule. To investigate the numerical performance of the update rule, it is embedded in our ALM based dynamic response optimizer, and the optimizer is applied to solve six typical dynamic response optimization problems. Our optimization results are compared with those obtained by employing three conventional update rules used in the literature, which shows that the suggested update rule is more efficient and more stable than the conventional ones.

  • PDF

Analysis of Packing Procedure Using Penalty Formulation in Injection Molding (사출성형에서의 Penalty Formulation을 이용한 Packing 과정 해석)

  • Kang, Sung-Yong;Kim, Seung-Mo;Kim, Sung-Kyung;Lee, Woo-Il;Kim, Dae-Hwan;Kim, Woo-Kyu;Kim, Hyung-Chae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.916-921
    • /
    • 2004
  • The penalty method has been widely applied to analyses of incompressible fluid flow. However, we have not yet found any prior studies that employed penalty method to analyze compressible fluid flow. In this study, with an eye on the apparent similarity between the slight compressible formulation and the penalty formulation, we have proposed a new approximate approach that can analyze compressible packing process using the penalty parameter l. Based on the assumption of the isothermal flow, a set of reference solutions was obtained to verify the validity of the proposed scheme. Furthermore, we have applied the proposed scheme to the analysis of the packing process of different cases.

  • PDF

Generator Penalty Factor Calculation including Slack Bus by Reference Angle Re-Specification (위상각 기준모선의 이동에 의한 Slack 모선을 포함한 모든 발전기의 Penalty 계수 계산방법)

  • Lee, Sang-Joong;Kim, Kern-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.49-51
    • /
    • 2000
  • ln this paper, a method by which penalty factors of all generators including slack bus can be directly derived is presented. With a simple re-assignment of angle reference bus to a bus where no generation exists, penalty factors for slack bus is obtained without any physical assumption. While previous Jacobian-based techniques for generator penalty factor calculation have been derived with basis upon reference bus, proposed method are not dependent on reference bus and calculated penalty factors can be substituted directly into the general ELD equation to compute the economic dispatch. Equations for system loss sensitivity, penalty factors and optimal generation allocation are solved simultaneously in normal power flow computation.

  • PDF

Analysis of Packing Procedure Using Penalty Formulation in Precision Injection Molding (정밀 사출성형에서의 Penalty Formulation을 이용한 Packing 과정 해석)

  • Kim Sun-Kyung;Kim Seung-Mo;Choi Doo-Sun;Lee Woo-Il;Kang Sung-Yong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.105-110
    • /
    • 2005
  • The penalty method has been widely applied to analyses of incompressible fluid flow. However, we have not yet found any prior studies that employed penalty method to analyze compressible fluid flow. In this study, with an eye on the apparent similarity between the slight compressible formulation and the penalty formulation, we have proposed a modified approximate approach that can analyze compressible packing process using the penalty parameter, which is an improvement on an earlier formulation (KSME, 2004B). Based on the assumption of the isothermal flow, a set of reference solutions was obtained to verify the validity of the proposed scheme. Furthermore, we have applied the proposed scheme to the analysis of the packing process of different cases.

  • PDF

SMOOTHING APPROXIMATION TO l1 EXACT PENALTY FUNCTION FOR CONSTRAINED OPTIMIZATION PROBLEMS

  • BINH, NGUYEN THANH
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.387-399
    • /
    • 2015
  • In this paper, a new smoothing approximation to the l1 exact penalty function for constrained optimization problems (COP) is presented. It is shown that an optimal solution to the smoothing penalty optimization problem is an approximate optimal solution to the original optimization problem. Based on the smoothing penalty function, an algorithm is presented to solve COP, with its convergence under some conditions proved. Numerical examples illustrate that this algorithm is efficient in solving COP.

Generating Cooperative Behavior by Multi-Agent Profit Sharing on the Soccer Game

  • Miyazaki, Kazuteru;Terada, Takashi;Kobayashi, Hiroaki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.166-169
    • /
    • 2003
  • Reinforcement learning if a kind of machine learning. It aims to adapt an agent to a given environment with a clue to a reward and a penalty. Q-learning [8] that is a representative reinforcement learning system treats a reward and a penalty at the same time. There is a problem how to decide an appropriate reward and penalty values. We know the Penalty Avoiding Rational Policy Making algorithm (PARP) [4] and the Penalty Avoiding Profit Sharing (PAPS) [2] as reinforcement learning systems to treat a reward and a penalty independently. though PAPS is a descendant algorithm of PARP, both PARP and PAPS tend to learn a local optimal policy. To overcome it, ion this paper, we propose the Multi Best method (MB) that is PAPS with the multi-start method[5]. MB selects the best policy in several policies that are learned by PAPS agents. By applying PS, PAPS and MB to a soccer game environment based on the SoccerBots[9], we show that MB is the best solution for the soccer game environment.

  • PDF

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Link Label-Based Optimal Path Algorithm Considering Station Transfer Penalty - Focusing on A Smart Card Based Railway Network - (역사환승페널티를 고려한 링크표지기반 최적경로탐색 - 교통카드기반 철도네트워크를 중심으로 -)

  • Lee, Mee Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.941-947
    • /
    • 2018
  • Station transfers for smart card based railway networks refer to transfer pedestrian movements that occur at the origin and destination nodes rather than at a middle station. To calculate the optimum path for the railway network, a penalty for transfer pedestrian movement must be included in addition to the cost of within-car transit time. However, the existing link label-based path searching method is constructed so that the station transfer penalty between two links is detected. As such, station transfer penalties that appear at the origin and destination stations are not adequately reflected, limiting the effectiveness of the model. A ghost node may be introduced to expand the network, to make up for the station transfer penalty, but has a pitfall in that the link label-based path algorithm will not hold up effectively. This research proposes an optimal path search algorithm to reflect station transfer penalties without resorting to enlargement of the existing network. To achieve this, a method for applying a directline transfer penalty by comparing Ticket Gate ID and the line of the link is proposed.

Weighted Support Vector Machines with the SCAD Penalty

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.481-490
    • /
    • 2013
  • Classification is an important research area as data can be easily obtained even if the number of predictors becomes huge. The support vector machine(SVM) is widely used to classify a subject into a predetermined group because it gives sound theoretical background and better performance than other methods in many applications. The SVM can be viewed as a penalized method with the hinge loss function and penalty functions. Instead of $L_2$ penalty function Fan and Li (2001) proposed the smoothly clipped absolute deviation(SCAD) satisfying good statistical properties. Despite the ability of SVMs, they have drawbacks of non-robustness when there are outliers in the data. We develop a robust SVM method using a weight function with the SCAD penalty function based on the local quadratic approximation. We compare the performance of the proposed SVM with the SVM using the $L_1$ and $L_2$ penalty functions.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.