• 제목/요약/키워드: Penalty function

검색결과 294건 처리시간 0.027초

유전자 알고리즘을 이용한 퍼지네트워크 성능관리기의 지식베이스 생성 (Formulation of Knowledge Base for Fuzzy Network Performance Manager with Genetic Algorithm)

  • 이상호;김인준;이경창;이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.514-518
    • /
    • 1996
  • This paper focuses on automated generation of the knowledge base for a fuzzy network performance manager in order to satisfy delay constraints imposed on time-critical messages while maintaining as much network capacity as possible for non-time-critical messages. Therefore, the bowlegs base is formulated to minimize a certain penalty function by using a type of genetic algorithm. The efficacy of the formulation method has been demonstrated by a series of simulation experiments.

  • PDF

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • 제2권6호
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

Damage detection based on MCSS and PSO using modal data

  • Kaveh, Ali;Maniat, Mohsen
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1253-1270
    • /
    • 2015
  • In this paper Magnetic Charged System Search (MCSS) and Particle Swarm Optimization (PSO) are applied to the problem of damage detection using frequencies and mode shapes of the structures. The objective is to identify the location and extent of multi-damage in structures. Both natural frequencies and mode shapes are used to form the required objective function. To moderate the effect of noise on measured data, a penalty approach is applied. A variety of numerical examples including two beams and two trusses are considered. A comparison between the PSO and MCSS is conducted to show the efficiency of the MCSS in finding the global optimum. The results show that the present methodology can reliably identify damage scenarios using noisy measurements and incomplete data.

A Study on the Improvement of Stress Field Analysis in a Domain Composed of Dissimilar Materials

  • Song, Kee-Nam;Lee, Jin-Seok
    • Nuclear Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.202-211
    • /
    • 1998
  • Interfacial stresses at two-material interfaces and initial displacement field over the entire domain are obtained by modifying the potential energy functional with a penalty function, which enforces continuity of the stresses at the interface of two materials. Based on the initial displacement field and interfacial stresses, a new methodology to generate a continuous stress field over the entire domain has been proposed by combining the modified projection method of stress-smoothing and Loubignac's iterative method of improving the displacement field. Stress analysis is carried out on two examples made of dissimilar materials : one is a two-material cantilever composed of highly dissimilar materials and the other is a zirconium-lined cladding tube made of slightly dissimilar materials. Results of the analysis show that the proposed method provides an improved continuous stress field over the entire domain, and accurately predicts the nodal stresses at the interface, while the conventional displacement-based finite element method produces significant stress discontinuities at the interface. In addition, the total strain energy evaluated from the improved continuous stress field converges to the exact value in a few iterations.

  • PDF

요소 세분화 및 재결합을 이용한 바람의 적응적 유한요소 해석 (Adaptive finite element wind analysis with mesh refinement and recovery)

  • 최창근;유원진;이은진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.60-67
    • /
    • 1998
  • This paper deals with the development of a variable-node element and its application to the adaptive h-version mesh refinement-recovery for the incompressible viscous flow analysis. The element which has variable mid-side nodes can be used in generating the transition zone between the refined and unrefined elements and efficiently used for construction of a refined mesh without generating distorted elements. A modified Gaussian quadrature is needed to evaluate the element matrices due to the discontinuity of derivatives of the shape functions used for the element. The penalty function method which can reduce the number of independent variables is adopted for the purpose of computational efficiency and the selective reduced integration is carried out for the convection and pressure terms to preserve the stability of solution. For the economical analysis of transient problems, not only the mesh refinement but also the mesh recovery is needed. The numerical examples show that the optimal mesh for the finite element analysis of a wind around the structures can be obtained automatically by the proposed scheme.

  • PDF

복합 적층구조의 최적설계를 위한 유전알고리즘의 적용 (Application of GA for Optimum Design of Composite Laminated Structures)

  • 이상근;한상훈;구봉근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.163-170
    • /
    • 1997
  • The present paper describes an investigation into the application of the genetic algorithm(GA) in the optimization of structural design. Stochastic processes generate an initial population of designs and then apply principles of natural selection/survival of the fittest to improve the designs. The five test functions are used to verify the robustness and reliability of GA, and as a numerical example, minimum weight of a cantilever composite laminated beam with a mix of continuous, integer and discrete design variables is obtained by using GA with exterior penalty function method. The design problem has constraints on strength, displacements, and natural frequencies, and is formulated to a multidimensional nonlinear form. From the results, it is found that the GA search technique is very effective at finding the good optimum solution as well as has higher robustness.

  • PDF

A Shared Buffer-Constrained Topology Reconfiguration Scheme in Wavelength Routed Networks

  • Youn, Chan-Hyun;Song, Hye-Won;Keum, Ji-Eun
    • ETRI Journal
    • /
    • 제27권6호
    • /
    • pp.725-732
    • /
    • 2005
  • The reconfiguration management scheme changes a logical topology in response to changing traffic patterns in the higher layer of a network or the congestion level on the logical topology. In this paper, we formulate a reconfiguration scheme with a shared buffer-constrained cost model based on required quality-of-service (QoS) constraints, reconfiguration penalty cost, and buffer gain cost through traffic aggregation. The proposed scheme maximizes the derived expected reward-cost function as well as guarantees the required flow's QoS. Simulation results show that our reconfiguration scheme significantly outperforms the conventional one, while the required physical resources are limited.

  • PDF

BEM을 이용한 Cathode 방식 시스템에서 전극 위치 최적화 (Optimum Location of Electrode of Cathodic Protection System by using Boundary Element Method)

  • 이광호;정군석;백동철;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.772-774
    • /
    • 2000
  • The objective of a cathodic protection system (CP) is to protect the buried metallic structure against the corrosion caused by chemical reaction between the buried structure and the surrounding medium, such as soil. This paper presents a boundary element application to determine the optimal impressed current densities in a cathodic protection system. The potential within the electrolyte is described by the Laplace's equation with nonlinear boundary conditions which are enforced based on experimentally determined electrochemical polarization curves. The optimal impressed current densities are determined in order to minimize the power supply for protection. The solution is obtained by using the conjugate gradient method in which the governing equations and the protecting conditions are taken into account by the penalty function method. Numerical example are presented to demonstrate the practical applicability of the proposed method.

  • PDF

비압축성 점성유체에 관한 유선상류화 유한요소 해석 (Streamline Upwind FE Analysis for Incompressible Viscous Flow Problem)

  • 최창근;유원진;김윤석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.54-61
    • /
    • 1996
  • This paper deals with finite element analysis for incompressible viscous flow problem By formulating the governing equation based on the streamline upwind concept , the wiggle phenomenon of fluid flow is minimized in spite of a few number of finite element used. The penalty function method which can reduce the number of independent variables is adopted for the purpose of computational efficiency and the selected reduced integral is carried out for the convection and pressure terms to reserve the stability of solution. In time-history analysis of fluid flow, the accuracy and reliability of an obtained solution are established by using the predictor-corrector method. Finally, correlation studies between analytical and experimental results are conducted wi th the object ive to establish the validity of the proposed numerical approach.

  • PDF