• Title/Summary/Keyword: Peel Strength

Search Result 343, Processing Time 0.031 seconds

Studies on the Surface Changes and Adhesion of EVA Foam by Plasma Treatment (플라즈마 처리에 의한 EVA Foam의 표면변화 및 접착특성에 관한 연구)

  • Choi, Myung Jin;Kim, Dong Ho;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • EVA foam was treated by oxygen plasma under a various treatment time for surface modification. The effect of plasma treatment on surface properties of EVA foam was investigated in terms of FT-IR ATR, XPS, contact angle, and SEM analysis and the adhesion characteristic of the EVA foam was studied in peel strength. As a results, EVA foam treated by plasma led to an elimination of organic compound, an increase of oxygen content, and an increase of surface roughness, resulting in improving the adhesion properties of the EVA foam. As the plasma treatment time increased, the hydrophilicity and physical change of surface of the EVA foam were increased and showed maximum value at 180 s and 420 s, respectively. The maximum adhesion strength appeared at plasma treatment time of 420 s and therefore, in this study the physical change was thought to be a major factor for improving the adhesion of the EVA foam.

  • PDF

Preparation and Adhesion Characteristics of Binary Blended Waterborne Polyurethane (이성분계 혼합 폴리우레탄 수분산체의 제조 및 접착 특성 연구)

  • Kim, Eun Ji;Park, In Kyu;Park, Jae Hyung
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.5-12
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesive properties of polyurethane mixed aqueous dispersions by omitting the primer, dealing with the preparation of skins for synthetic leather with excellent adhesion by omitting the pre-treatment process. The two-component mixed polyurethane water dispersion was prepared by synthesizing an ester-based polyurethane resin (PU-T) and a carbonate-based polyurethane resin (PU-C) to obtain the final resin. As a result of measuring the peel strength of the adhesive specimens omitting the pre-treatment agent, it was confirmed that the state adhesive strength (ethylene vinyl acetate (middle): $4.2kg_f/cm$ and rubber (outsole): $4.4kg_f/cm$) there was. This makes it possible to omit the pre-treatment process which has been indispensably used in the shoe manufacturing process, thereby reducing the process time and reducing the amount of volatile organic compounds (VOCs) generated in the pre-treatment product, resulting in environmentally advantageous.

Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group (카르복시산을 포함하는 Grafted EPDM의 접착특성에 관한 연구)

  • Kim, Dongho;Yoon, Yoomi;Chung, Ildoo;Park, Chanyoung;Bae, Jongwoo;Oh, Sangtaek;Kim, Guni
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The effect of the grafting ratio on the mechanical property and adhesion property of the grafted EPDM modified with methacrylic acid (MA) was investigated. The storage modulus of MA-grafted EPDM was maintained higher than that of cross-linked EPDM vulcanizate by sulfur, but it was observed that the storage modulus was decreased at elevated temperature because of the weakened secondary bonding. When the functional group for hydrogen bonding was introduced in EPDM, it had excellent mechanical properties by the aggregate between grafted EPDM molecules and crystallinity of MA. The bonding strength between EPDM and other rubbers was very low because EPDM has nonpolar property and low molecular interaction to others. The bonding strength was increased as increasing grafting ratio and it was excellent enough to break the rubber during the peel test when the grafting ratio was more than 10%.

Synthesis and Properties of Polyurethane Dispersion Containing Monomeric Diol (Monomeric Diol에 따른 수분산 폴리우레탄의 합성 및 특성)

  • Shin, Sang-Hoon;Jeong, Boo-Young;Chung, Il Doo;Jo, Nam-Ju;Cheon, Jung-Mi;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.100-105
    • /
    • 2010
  • In this study, polyurethane dispersion was prepared by polyester polyol, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylolpropionic acid (DMPA), and monomeric diol. The effect of various monomeric diol, polyol/monomeric diol molar ratio and DMPA contents on the properties of polyurethane dispersion were investigated. As the molecular weight of monomeric diol and monomeric diol molar ratio increased, $T_g$ gradually increased. And when DMPA contents increased, also $T_g$ gradually increased. In the results of mechanical properties, when the molecular weight of monomeric diol, monomeric diol molar ratio of polyol/monomeric diol and DMPA contents increased, tensile strength was increased. Finally, optimum peel strength obtained when polyol/monomeric diol ratio was 8 : 2.

Synthesis and Characterization of Water-borne Pressure Sensitive Adhesives Polymerized using Styrenated Phenol Type Surfactants (스티렌페놀계 계면활성제 기반 친환경 수계 점착제 합성 및 특성 분석)

  • Song, Young Kyu;Lee, Sang-Ho;Park, Young Il;Kim, Jin Chul
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.156-161
    • /
    • 2020
  • Waterborne pressure sensitive adhesives (PSA) has been received much attentions from both academia and industries as an environmental friendly-technology because it can significantly reduce use of hazardous organic volatile solvents. However, in the process of the mass production of waterborne PSAs, hazardous phenol type amphiphilic compounds have essentially been used as surfactants for the emulsion polymerization. For the reason, tremendous research efforts have been made to develop environment-friendly organic surfactant which can replace the phenol type surfactants. In this study, we verify the potential of a new class of surfactants based on the styrenated phenol derivatives as an alternative to the phenol type surfactants.

Pomegranate extract on eroded dentin: antioxidant action, bond strength and morphology of the adhesive interface after aging

  • Thiago Vinicius Cortez;Nathalia Mancioppi Cerqueira;Julia Adornes Gallas;Wanderley Pereira Oliveira;Silmara Aparecida Milori Corona;Aline Evangelista Souza-Gabriel
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.1
    • /
    • pp.9.1-9.14
    • /
    • 2024
  • Objectives: This study aimed to evaluate the effect of pomegranate solution (Punica granatum) on eroded dentin through antioxidant action, shear bond strength (SBS) and interface morphology. Materials and Methods: The 10% pomegranate peel extract was prepared by the lyophilization method. Punicalagin polyphenol was confirmed by high-performance liquid chromatography. Antioxidant activity was evaluated by capturing the 2,2-diphenyl1-picrylhydrazyl (DPPH) radical. For the SBS, 48 dentin fragments were divided into sound or eroded, and subdivided according to the pretreatment (n = 12): water or P. granatum. The surfaces were restored with self-etch adhesive and a bulk-fill resin (Ecosite; DMG). The SBS was done immediately (24 hours) and after thermal cycling + water storage (12 months). For scanning electron microscopy, 48 dentin fragments (24 sound and 24 eroded) received the same treatments as for SBS (n = 6), and they were analyzed after 24 hours and 12 months. Results: The P. granatum had antioxidant action similar (p = 0.246) to the phenolic standard antioxidants. After 24 hours, eroded dentin had lower SBS than sound dentin (p < 0.001), regardless of the pretreatment. After 12 months, P. granatum maintained the SBS of sound dentin (13.46 ± 3.42 MPa) and eroded dentin (10.96 ± 1.90 MPa) statistically similar. The lowest values were found on eroded dentin treated with water (5.75 ± 1.65 MPa) (p < 0.001). P. granatum on eroded dentin caused peritubular demineralization and hybrid layer with resin tags. Conclusions: The pomegranate extract had antioxidant action and preserved the adhesive interface of the eroded dentin.

Development on New Laser Tabbing Process for Modulation of Thin Solar Cell (박형 태양 전지 모듈화를 위한 레이져 태빙 자동화 공정(장비) 개발)

  • No, Donghun;Choi, Chul-June;Cho, Hyun Young;Yu, Jae Min;Kim, JungKeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • In solar cell module manufacturing, single solar cells has to be joined electrically to strings. Copper stripes coated with tin-silver-copper alloy are joined on screen printed silver of solar cells which is called busbar. The bus bar collects the electrons generated in solar cell and it is connected to the next cell in the conventional module manufacturing by a metal stringer using conventional hot air or infrared lamp soldering systems. For thin solar cells, both soldering methods have disadvantages, which heats up the whole cell to high temperatures. Because of the different thermal expansion coefficient, mechanical stresses are induced in the solar cell. Recently, the trend of solar cell is toward thinner thickness below 180um and thus the risk of breakage of solar cells is increasing. This has led to the demand for new joining processes with high productivity and reduced error rates. In our project, we have developed a new method to solder solar cells with a laser heating source. The soldering process using diode laser with wavelength of 980nm was examined. The diode laser used has a maximum power of 60W and a scanner system is used to solder dimension of 6" solar cell and the beam travel speed is optimized. For clamping copper stripe to solar cell, zirconia(ZrO)coated iron pin-spring system is used to clamp both joining parts during a scanner system is traveled. The hot plate temperature that solar cell is positioned during lasersoldering process is optimized. Also, conventional solder joints after $180^{\circ}C$ peel tests are compared to the laser soldering methods. Microstructures in welded zone shows that the diffusion zone between solar cell and metal stripes is better formed than inIR soldering method. It is analyzed that the laser solder joints show no damages to the silicon wafer and no cracks beneath the contact. Peel strength between 4N and 5N are measured, with much shorter joining time than IR solder joints and it is shown that the use of laser soldering reduced the degree of bending of solar cell much less than IR soldering.

  • PDF

A Study on the Optimization of CP Based Low-temperature Tabbing Process for Fabrication of Thin c-Si Solar Cell Module (박형 태양전지모듈 제작을 위한 저온 CP 공정 최적화에 관한 연구)

  • Jin, Ga-Eon;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Song, Hee-eun;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Thin crystalline silicon (C-Si) solar cell is expected to be a low price energy source by decreasing the consumption of Si. However, thin c-Si solar cell entails the bowing and crack issues in high temperature manufacturing process. Thus, the conventional tabbing process, based on high temperature soldering (> $250^{\circ}C$), has difficulties for applying to thin c-Si solar cell modules. In this paper, a conductive paste (CP) based interconnection process has been proposed to fabricate thin c-Si solar cell modules with high production yield, instead of existing soldering materials. To optimize the process condition for CP based interconnection, we compared the performance and stability of modules fabricated under various lamination temperature (120, 150, and $175^{\circ}C$). The power from CP based module is similar to that with conventional tabbing process, as modules are fabricated. However, the output of CP based module laminated at $120^{\circ}C$ decreases significantly (14.1% for Damp heat and 6.1% for thermal cycle) in harsh condition, while the output drops only in 3% in the samples process at $150^{\circ}C$, $175^{\circ}C$. The peel test indicates that the unstable performance of sample laminated at $120^{\circ}C$ is attributed to weak adhesion strength (1.7 N) between cell and ribbon compared to other cases (2.7 N). As a result, optimized lamination temperature for CP based module process is $150^{\circ}C$, considering stability and energy consumption during the fabrication.

Feasibility Study of Different Biochars as Adsorbent for Cadmium and Lead

  • Kim, In Ja;Kim, Rog-Young;Kim, Ji In;Kim, Hyoung Seop;Noh, Hoe-Jung;Kim, Tae Seung;Yoon, Jeong-Ki;Park, Gyoung-Hun;Ok, Yong Sik;Jung, Hyun-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.332-339
    • /
    • 2015
  • The objective of this study was to evaluate the effectiveness of different biochars on the removal of heavy metals from aqueous media. The experiment was carried out in aqueous solutions containing $200mg\;CdL^{-1}$ or $200mg\;PbL^{-1}$ using two different biochars derived from soybean stover and orange peel (20 mg Cd or $Pbg^{-1}$ biochar). After shaking for 24 hours, biochars were filtered out, and Cd and Pb in the filtrate were analyzed by flame atomic absorption spectrophotometer (FAAS). In order to provide information regarding metal binding strength on biochars, sequential extraction was performed by modified SM&T (formerly BCR). The results showed that 70~100% of initially added Cd and Pb was adsorbed on biochars and removed from aqueous solution. The removal rate of Pb (95%, 100%) was higher than that of Cd (70%, 91%). In the case of Cd, orange peel derived biochar (91%) showed higher adsorption rate than soybean stover derived biochar (70%). Cd was adsorbed on the biochar mainly in exchangeable and carbonates fraction (1st phase). In contrast, Pb was adsorbed on it mainly in the form of Fe-Mn oxides and residual fraction (2nd and 4th phase). The existence of Cd and Pb as a form of surface-precipitated complex was also observed on the surfaces of biochars detected by field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectrometer (EDAX).

Performance Evaluation of RC Slabs Strengthened by Stiff Type PolyUrea (경질형 폴리우레아로 보강된 RC 슬래브의 성능 평가)

  • Park, Jeong Cheon;Lee, Sang Won;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.457-464
    • /
    • 2011
  • An experimental study was performed to evaluate the possibility of using stiff type PolyUrea(PU) on RC slab as a strengthening material. Stiff type PU(STPU) was sprayed on the bottom surface of the slab specimens, which were then attached with CFRP or GFRP sheets. Also the evaluation of the bond capacity, the single most influential parameter on strengthening of RC structures, was carried out the flexural capacity evaluation test results showed that the load carrying capacity of the PU specimen was greater and less than the unstrengthened and FRP sheet attached specimens, respectively. The STPU specimens showed a ductile flexural behavior in the plastic displacement range. With respect to bond capacity, the bond strength of all of the specimen exceeded the code required bond strength of 1.5 MPa. Also, the STPU sprayed specimen without using epoxy resin did not peel off when the tensile grip was applied for testing. The stability of the PU bond failure indicate a good bond strength of PU when applied to concrete.