Browse > Article
http://dx.doi.org/10.17702/jai.2012.13.1.001

Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group  

Kim, Dongho (Korea Institute of Footwear & Leather Technology)
Yoon, Yoomi (Korea Institute of Footwear & Leather Technology)
Chung, Ildoo (Advanced Nano Materials Lab, Department of Polymer Science & Engineering, Pusan National University)
Park, Chanyoung (Department of Polymer Engineering, Pukyong National University)
Bae, Jongwoo (Korea Institute of Footwear & Leather Technology)
Oh, Sangtaek (Korea Institute of Footwear & Leather Technology)
Kim, Guni (Korea Institute of Footwear & Leather Technology)
Publication Information
Journal of Adhesion and Interface / v.13, no.1, 2012 , pp. 1-8 More about this Journal
Abstract
The effect of the grafting ratio on the mechanical property and adhesion property of the grafted EPDM modified with methacrylic acid (MA) was investigated. The storage modulus of MA-grafted EPDM was maintained higher than that of cross-linked EPDM vulcanizate by sulfur, but it was observed that the storage modulus was decreased at elevated temperature because of the weakened secondary bonding. When the functional group for hydrogen bonding was introduced in EPDM, it had excellent mechanical properties by the aggregate between grafted EPDM molecules and crystallinity of MA. The bonding strength between EPDM and other rubbers was very low because EPDM has nonpolar property and low molecular interaction to others. The bonding strength was increased as increasing grafting ratio and it was excellent enough to break the rubber during the peel test when the grafting ratio was more than 10%.
Keywords
grafted EPDM; hydrogen bonding; adhesion; viscoelasticity; acrylic monomer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. K. De and A. K. Bhowmick, Thermoplastic Elastomers from Rubber-Plastic Blends, Eds., Ellis Horwood, New York (1990).
2 K. Chino and M. Ashiura, Macromolecules, 34, 9201 (2001).   DOI
3 Y. W. Chang, J. K. Mishra, S. K. Kim, and D. K. Kim, Mater. Lett., 60, 3118 (2006).   DOI
4 T. Kurian, A. K. Bhattacharya, P. P. De, D. K. Tripathy, and S. K. De, Plastics, Rubber and Composites and Applications, 24, 285 (1995).
5 A. Eisenberg, Ions in Polymers, Ed.; American Chemical Society: Washington, DC (1980).
6 K. Chino, Jap. Rubber Soc., 78, 106 (2005).   DOI
7 K. Chino, M. Ashiura, and J. Natori, Rubber Chem. Technol., 75, 713 (2002).   DOI
8 P. Antony and S. K. De, Polymer, 40, 1487 (1999).   DOI
9 M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, Polymer, 49, 1239 (2008).   DOI
10 A. Eisenberg and J. S. Kim, Introduction to Ionomers, Eds.; John Wiley & Sons: New York (1998).
11 S. Schlick, Ionomers; Characterizations, Theory and Application, Ed.; CRC Press: Boca Raton, FL (1996).
12 O. Colombani, C. Barioz, L. Bouteiller, C. Chaneac, L. Fomperie, F. Lortie, and H. Montes, Macromolecules, 38, 1752 (2005).   DOI
13 C. C. Peng and V. Abetz, Macromolecules, 38, 5575 (2005).   DOI
14 이경남, 대한민국특허 10-0407859 (2003).
15 김재성, 대한민국특허 10-1023757 (2011).
16 손정호, 대한민국특허 10-0303887 (2001).
17 이병조, 대한민국특허 10-0431128 (2004).
18 M. Bengt and S. Bengt, J. Appl. Polym. Sci., 50, 1247 (1993).   DOI
19 M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, Rubber Chem. Technol., 81, 96 (2008).   DOI
20 M. A. J. van der Mee, R. M. A. I'Abee, G. Portale, J. G. P. Goossens, and M. van Duin, Macromolecules, 41, 5493 (2008).   DOI
21 C. X. Sun, M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, Macromolecules, 39, 3441 (2006).   DOI
22 G. Holden, N. R. Legge, and R. P. Quirk, Thermoplastic Elastomers: A Comprehensive Review, Eds., Hanser, Munich (1987).
23 G. Holden, Understanding Thermoplastic Elastomers, Ed., Hasnser, Munich (2000).