• Title/Summary/Keyword: Pediococcus

Search Result 267, Processing Time 0.023 seconds

Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential

  • Hwanhlem, Noraphat;Salaipeth, Lakha;Charoensook, Rangsun;Kanjan, Pochanart;Maneerat, Suppasil
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.355-364
    • /
    • 2022
  • From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39℃, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.

Bacterial Community of Galchi-Baechu Kimchi Based on Culture-Dependent and - Independent Investigation and Selection of Starter Candidates

  • Kim, Tao;Heo, Sojeong;Na, Hong-Eun;Lee, Gawon;Kim, Jong-Hoon;Kwak, Mi-Sun;Sung, Moon-Hee;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.341-347
    • /
    • 2022
  • In this study, the bacterial community of galchi-baechu kimchi was determined using culture-based and culture-independent techniques (next generation sequencing:NGS), and showed discrepancies between results. Weissella koreensis and Pediococcus inopinatus were the dominant species according to the NGS results, while Bacillus species and P. inopinatus were dominant in the culture-dependent analysis. To identify safe starter candidates, sixty-five Bacillus strains isolated from galchi-baechu kimchi using culture-dependent methods were evaluated for their antibiotic resistance, presence of toxin genes, and hemolytic activity. Strains were then assessed for salt tolerance and protease and lipase activity. As a result, four strains-B. safensis GN5_10, B. subtilis GN5_19, B. velezensis GN5_25, and B. velezensis GT8-were selected as safe starter candidates for use in fermented foods.

Improvement of Orchardgrass (Dactylis glomerata L.) Silage Quality by Lactic Acid Bacteria

  • Ilavenil, Soundharrajan;Muthusamy, Karnan;Jung, Jeong Sung;Lee, Bae Hun;Park, Hyung Soo;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.302-307
    • /
    • 2021
  • In the current study, lactic lactic acid bacteria (LAB) Lactobacillus plantarum and Pediococcus pentosaceus were used as a mixed additive for the production of Orchardgrass silage by ensiled method and nutritional change fermentation ability and microbial content of experimental silages. The addition of LAB to Orchardgrass during ensiling process rapidly reduced the pH of the silages than the non-inoculated silages. In addition, the lactic and acetic acid content of silage was increased by LAB strains than the non-inoculated silages whereas butyric acid content was reduced in silage treated with LAB. A microbiological study revealed that higher LAB but lower yeast counts were observed in inoculated silages compared to non-inoculated silage. Overall data suggested that the addition of LAB stains could have ability to induce the fermentation process and improve the silage quality via increasing lactic acid and decreasing undesirable microbes.

Preliminary Data on the Ratio of D(-)-Lactate and L(+)-Lactate Levels in Various Lactic Acid Bacteria as Evaluated using an Enzymatic Method

  • Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This study evaluated the levels of D(-)-lactate and L(+)-lactate, and the ratio of D(-)-lactate to total lactate (D(-)-lactate + L(+)-lactate) of 15 lactic acid bacteria (LAB) using an enzymatic method. D(-)-lactate and L(+)-lactate levels in the LAB ranged from 0.31 to 13.9 mM and 0.76 to 39.3 mM, respectively, in Bifidobacterium sp.; 1.08 to 11.7 mM and 0.69-13.0 mM in Lactobacillus sp.; 0.72 to 20.3 mM and 0.98 to 32.3 mM in Leuconostoc sp., and 33.0 mM and 39.2 mM in Pediococcus acidilacti KCCM 11747. The ratio of the range of D(-)-lactic acid to total lactic acid was 28.98%-45.76% in Bifidobacterium sp., 41.18%-61.02% in Lactobacillus sp., 29.85%-42.36% in Leuconostoc sp., and 45.71% in P. acidilacti KCCM 11747. In the future, there is a need to test for D(-)-lactate in various fermented products to which different LAB have been added and study the screening of LAB used as probiotics that produce various concentrations of D(-)-lactate.

A Culture-Independent Comparison of Microbial Communities of Two Maturating Craft Beers Styles

  • Joao Costa;Isabel N. Sierra-Garcia;Angela Cunha
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.404-413
    • /
    • 2022
  • The process of manufacturing craft beer involves a wide variety of spontaneous microorganisms, acting in different stages of the brewing process, that contribute to the distinctive characteristics of each style. The objective of this work was to compare the structure of microbial communities associated with two different craft beer styles (Doppelbock and Märzen lagers), at a late maturation stage, and to identify discriminative, or style-specific taxa. Bacterial and fungal microbial communities were analyzed by Illumina sequencing of 16S rRNA gene of prokaryotes and the ITS 2 spacer of fungi (eukaryotes). Fungal communities in maturating beer were dominated by the yeast Dekkera, and by lactic acid (Lactobacillus and Pediococcus) and acetic acid (Acetobacter) bacteria. The Doppelbock barrels presented more rich and diverse fungal communities. The Märzen barrels were more variable in terms of structure and composition of fungal and bacterial communities, with occurrence of exclusive taxa of fungi (Aspergillus sp.) and bacteria (L. kimchicus). Minority bacterial taxa, differently represented in the microbiome of each barrel, may underlie the variability between barrels and ultimately, the distinctive traits of each style. The composition of the microbial communities indicates that in addition to differences related to upstream stages of the brewing process, the contact with the wood barrels may contribute to the definition of style-specific microbiological traits.

Proteolysis Analysis and Sensory Evaluation of Fermented Sausages using Strains Isolated from Korean Fermented Foods

  • Chang-Hwan Jeong;Sol-Hee Lee;Hack-Youn Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.877-888
    • /
    • 2023
  • We studied the proteolysis and conducted a sensory evaluation of fermented sausages using strains derived from Kimchi [Pediococcus pentosaceus-SMFM2021-GK1 (GK1); P. pentosaceus-SMFM2021-NK3 (NK3)], Doenjang [Debaryomyces hansenii-SMFM2021-D1 (D1)], and spontaneous fermented sausage [Penicillium nalgiovense-SMFM2021-S6 (S6)]. Fermented sausages were classified as commercial starter culture (CST), mixed with GK1, D1, and S6 (GKDS), and mixed with NK3, D1, and S6 (NKDS). The protein content and pH of GKDS and NKDS were significantly higher than those of CST on days 3 and 31, respectively (p<0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the NKDS had higher molecular weight proteins than the GKDS and CST. The myofibrillar protein solubility of the GKDS and NKDS was significantly higher than that of the CST on day 31 (p<0.05). The GKDS displayed significantly higher pepsin and trypsin digestion than the NKDS on day 31 (p<0.05). The hardness, chewiness, gumminess, and cohesiveness of the GKDS were not significantly different from those of the CST. The GKDS exhibited the highest values for flavor, tenderness, texture, and overall acceptability. According to this study, sausages fermented using lactic acid bacteria (GK1), yeast (D1), and mold (S6) derived from Korean fermented foods displayed high proteolysis and excellent sensory evaluation results.

Effects of exogenous enzymes from invertebrate gut-associated bacteria on volatile organic compound emissions and microbiota in an in vitro pig intestine continuous fermentation model

  • Jong-Hoon Kim;Ho-Yong Park;Kwang-Hee Son
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.2
    • /
    • pp.67-77
    • /
    • 2024
  • This study aims to assess the efficacies of exogenous enzymes, derived from invertebrate gut-associated microbes, as feed additives, in reducing volatile organic compound (VOC) emissions using an in vitro pig intestine continuous fermentation system. An in vitro continuous fermentation model was used to simulate a comparable bionic digestion system by co-reacting feed, enzymatic additives (arazyme, mannanase, and xylanase, derived from the gut bacteria of Nephila clavata, Eisenia fetida, and Moechotypa diphysis, respectively), and gastrointestinal microbes, followed by an analysis of their correlations. A significant correlation was observed between exogenous enzyme supplementation and reduced VOC emissions in the fecal phase of continuous fermentation (p < 0.05). The concentration of VOCs decreased by 3.75 and 2.75 ppm in the treatment group following arazyme and multi-enzyme supplementation, respectively, compared to that in the control group (7.83 ppm). In addition, supplementation with arazyme and multiple enzymes significantly affected the microbial composition of each fermentation phase (p < 0.05). In particular, Lactiplantibacillus pentosus and Pediococcus pentosaceus, which changed in abundance according to arazyme or multi-enzyme supplementation, exhibited a positive relationship with VOC emissions. These results suggest that exogenous enzymes derived from invertebrate gut-associated bacteria can be efficiently applied as feed additives, leading to a reduction in VOC emissions.

The Effect of Sorbic Acid on the Kimchi Fermentation and Stability of Ascorbic Acid (Sorbic acid가 김치발효와 Ascorbic acid 안정도에 미치는 영향)

  • 안숙자
    • Korean journal of food and cookery science
    • /
    • v.1 no.1
    • /
    • pp.18-26
    • /
    • 1985
  • The effect of 0.05% Sorbic acid on the Kimchi fermentation and stability of ascorbic acid were investigated at 23~$25^{\circ}C$. The results are as follows. 1. Kimchi with sorbic acid showed a higher pH and a lower total acidity in general, as compared with the control Kimchi. 2. Kimchi with sorbic acid contains more ascorbic acid for the fermentation period. Especially showed the higher hydro ascorbic acid than control Kimchi. 3. The Lacticacid bacteria isolated from Baechu Kimchi and Dongchimi are identifi-ed as Leuconostoc mesenteroides, Lactobacillus Plantarum, Lactobacillus brevis, Streptococcus faecalis, Pediococcus pentosaceus. 4. The effect of sorbic acid upon the growth of Lactic acid bacteria and acid prod-ucibility is found least in Lactobacillus Plantarum, and most in Leuconostoc mesenter-oides. 5. The changes of Lacticacid bacteria occured during Kimchi fermentation curbed Leuconostoc mesenteroides most of all in Baechu Kimchi and Dongchimi with sorbic acid, while the least influence was had on Lactobacillus plantarum. Expecially, yeast wae completely curbed. 6. A result of a sensory evaluation reveals that a better taste is derived from the control Kimchi, with a significant difference, in pH4~4.3, whereas from Kimchi with sorbic acia in pH 3.7~3.8.

  • PDF

Effect of Feeding Direct-fed Microbial as an Alternative to Antibiotics for the Prophylaxis of Calf Diarrhea in Holstein Calves

  • Kim, Min-Kook;Lee, Hong-Gu;Park, Jeong-Ah;Kang, Sang-Kee;Choi, Yun-Jaie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.643-649
    • /
    • 2011
  • The objective of this study was to determine the effect of feeding direct-fed microbials (DFM) on the growth performance and prophylaxis of calf diarrhea during the pre-weaning period as an alternative to antibiotics. A multi-species DFM was formulated including three lactic acid bacteria (Lactobacillus salivarius Ls29, Pediococcus acidilactia Pa175, and L. plantarum Lp177), three Bacillus strains (B. subtilis T4, B. polymyxa T1 and SM2), one yeast, Saccharomyces boulardii, and a nonpathogenic E. coli Nissle 1917. Lactic acid bacteria and Bacillus strains were selected based on the antibacterial activity against various animal pathogens, especially pathogenic E. coli using agar diffusion methods in vitro. Test and control groups were fed milk replacer and calf starter supplemented with DFM ($10^9$ cfu each of eight species/d/head, n = 29) or with antibiotics (0.1% neomycin sulfate in milk replacer and Colistin 0.08% and Oxyneo 110/110 0.1% in calf starter, n = 15), respectively. Overall fecal score and the incidence rate of diarrhea were reduced in the DFM group compared to the antibiotics one. About 40% of calves in antibiotic group suffered from diarrhea while in DFM group only 14% showed diarrhea. There was no difference in the average daily gain and feed efficiency of two groups. The hematological levels of calves were all within the normal range with no significant difference. In conclusion, the feeding of multispecies DFM during the pre-weaning period could reduce calf diarrhea and there was no difference in the growth performance between the groups, thus showing the potential as an alternative to antibiotics.

Bacterial Diversity at Different Sites of the Digestive Tract of Weaned Piglets Fed Liquid Diets

  • Hong, Tran Thi Thu;Passoth, Volkmar;Lindberg, Jan Erik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.834-843
    • /
    • 2011
  • Bacterial diversity was studied using PCR-DGGE, cloning and sequencing. DNA was isolated from digesta samples from stomach, ileum and colon of 28 weaned piglets (Large White${\times}$Mong Cai) fed dry control feed, naturally fermented liquid feed (FE) and a liquid diet with inclusion of rice distiller's residue feed. General bacterial diversity was described using DGGE analysis of the V3 region of 16S rDNA. The microbial populations in the stomach and the ileum were considerably influenced by the diet, while only marginal effects were observed in the colon. There was a large variation of the microbial flora in the stomach between individuals fed non-fermented diets. In contrast, animals fed diet FE had a more uniform microbial flora in the stomach and the ileum compared to the other diets. In total 47 bands from the DGGE profiles were cloned. In stomach, most frequently lactic acid bacteria were found. Feeding diet FE resulted in the occurrence of Pediococcus species in stomach and ileum. In pigs fed the other diets, Lactobacillus gallinarum, Lactobacillus johnsonii and Lactobacillus fermentum were found in stomach and ileum. Most of the sequences of bands isolated from colon samples and several from ileum matched to unknown bacteria, which often grouped within Prevotellaceae, Enterobacteriaceae, Bacteroidaceae and Erysipelotrichaceae. This study demonstrates that fermented liquid feed affects bacterial diversity and the specific microflora in stomach and ileum, which provides a potential to modulate the gut microflora with dietary means to increase the abundance of beneficial bacteria and improve piglets' health.