Browse > Article
http://dx.doi.org/10.48022/mbl.2204.04002

A Culture-Independent Comparison of Microbial Communities of Two Maturating Craft Beers Styles  

Joao Costa (Department of Chemistry, University of Aveiro, Campus de Santiago)
Isabel N. Sierra-Garcia (CESAM and Department of Biology, University of Aveiro, Campus de Santiago)
Angela Cunha (CESAM and Department of Biology, University of Aveiro, Campus de Santiago)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.3, 2022 , pp. 404-413 More about this Journal
Abstract
The process of manufacturing craft beer involves a wide variety of spontaneous microorganisms, acting in different stages of the brewing process, that contribute to the distinctive characteristics of each style. The objective of this work was to compare the structure of microbial communities associated with two different craft beer styles (Doppelbock and Märzen lagers), at a late maturation stage, and to identify discriminative, or style-specific taxa. Bacterial and fungal microbial communities were analyzed by Illumina sequencing of 16S rRNA gene of prokaryotes and the ITS 2 spacer of fungi (eukaryotes). Fungal communities in maturating beer were dominated by the yeast Dekkera, and by lactic acid (Lactobacillus and Pediococcus) and acetic acid (Acetobacter) bacteria. The Doppelbock barrels presented more rich and diverse fungal communities. The Märzen barrels were more variable in terms of structure and composition of fungal and bacterial communities, with occurrence of exclusive taxa of fungi (Aspergillus sp.) and bacteria (L. kimchicus). Minority bacterial taxa, differently represented in the microbiome of each barrel, may underlie the variability between barrels and ultimately, the distinctive traits of each style. The composition of the microbial communities indicates that in addition to differences related to upstream stages of the brewing process, the contact with the wood barrels may contribute to the definition of style-specific microbiological traits.
Keywords
Acetic acid bacteria; brewing yeasts; Illumina; lactic acid bacteria; microbiomes;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 De Keukeleire D. 2000. Fundamentals of beer and hop chemistry. Quim. Nova 23: 108-112.   DOI
2 Salanta LC, Coldea TE, Ignat MV, Pop CR, Tofana M, Mudura E, et al. 2020. Non-alcoholic and craft beer production and challenges. Processes 8: 1382.
3 Bokulich NA, Bamforth CW, Mills DA. 2012. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS One 7: e35507.
4 Monerawela C, Bond U. 2018. The hybrid genomes of Saccharomyces pastorianus: A current perspective. Yeast 35: 39-50.   DOI
5 Nevoigt E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72: 379-412.   DOI
6 Walker GM, Stewart GG. 2016. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2: 30.
7 Spitaels F, Wieme AD, Janssens M, Aerts M, Daniel H-M, Van Landschoot A, et al. 2014. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One 9: e95384.
8 Aquilani B, Laureti T, Poponi S, Secondi L. 2015. Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Qual. Prefer. 41: 214-224.   DOI
9 Mastanjevic K, Krstanovic V, Lukinac J, Jukic M, Lucan M, Mastanjevic K. 2019. Craft brewing-is it really about the sensory revolution? Kvasny Prumysl. 65: 13-16.   DOI
10 Bossaert S, Crauwels S, De Rouck G, Lievens B. 2019. The power of sour-a review: old traditions, new opportunities. Brewingscience 72: 78-88.
11 Dysvik A, La Rosa SL, De Rouck G, Rukke E-O, Westereng B, Wicklund T. 2020. Microbial dynamics in traditional and modern sour beer production. Appl. Environ. Microbiol. 86: e00566-20.
12 Bossaert S, Winne V, Van Opstaele F, Buyse J, Verreth C, HerreraMalaver B, et al. 2020. Description of the temporal dynamics in microbial community composition and beer chemistry in sour beer production via barrel ageing of finished beers. Int. J. Food Microbiol. 339: 109030.
13 Rodhouse L, Carbonero F. 2019. Overview of craft brewing specificities and potentially associated microbiota. Crit. Rev. Food Sci. Nutr. 59: 462-473.   DOI
14 De Roos J, Van der Veken D, De Vuyst L. 2019. The interior surfaces of wooden barrels are an additional microbial inoculation source for lambic beer production. Appl. Environ. Microbiol. 85: e02226-18.
15 Comeau AM, Douglas GM, Langille MG. 2017. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems 2: e00127-16.
16 Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5: 1571-1579.   DOI
17 Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41: e1.
18 Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, et al. 2014. Global diversity and geography of soil fungi. Science 346: 1256688.
19 Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27: 863-864.   DOI
20 Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9: 88.
21 Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. 2013. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4: 914-919.
22 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, AlGhalith GA, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37: 852-857.   DOI
23 Bokulich NA, Bergsveinson J, Ziola B, Mills DA. 2015. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. Elife 4: e04634.
24 Bardou F, Ariel F, Simpson CG, Romero-Barrios N, Laporte P, Balzergue S, et al. 2014. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev. Cell 30: 166-176.   DOI
25 Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6: 90.
26 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. 2019. Vegan: community ecology package (version 2.5- 6). Comprehensive R Arch. Network.
27 Wickham H. 2016. ggplot2-Elegant Graphics for Data Analysis. Springer International Publishing. Cham, Switzerland.
28 Ver Eecke H, Lambert J, Fetter L, Stout G, Spindler M. 2017. Presented at the 2017 SIMB Annual Meeting and Exhibition.
29 Shayevitz A, Harrison K, Curtin CD. 2020. Barrel-induced variation in the microbiome and mycobiome of aged sour ale and imperial porter beer. J. Am. Soc. Brew. Chem. 79: 33-40.
30 Kochlanova T, Kij D, Kopecka J, Kubizniakova P, Matoulkova D. 2016. Non-Saccharomyces yeasts and their importance in the brewing industry Part I - Brettanomyces (Dekkera). Kvasny Prumysl. 62: 198-205.
31 Tyakht A, Kopeliovich A, Klimenko N, Efimova D, Dovidchenko N, Odintsova V, et al. 2021. Characteristics of bacterial and yeast microbiomes in spontaneous and mixed-fermentation beer and cider. Food Microbiol. 94: 103658.
32 Basso RF, Alcarde AR, Portugal CB. 2016. Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res. Int. 86: 112-120.   DOI
33 Methner Y, Hutzler M, Matoulkova D, Jacob F, Michel M. 2019. Screening for the brewing ability of different non-Saccharomyces yeasts. Fermentation 5: 101.
34 Noots I, Delcour JA, Michiels CW. 1999. From field barley to malt: detection and specification of microbial activity for quality aspects. Crit. Rev. Microbiol. 25: 121-153.   DOI
35 Sobel J, Henry L, Rotman N, Rando G. 2017. BeerDeCoded: the open beer metagenome project. F1000Res. 6: 1676.
36 Nigam D, Asthana M, Kumar A. 2018. Penicillium: a fungus in the wine and beer industries, pp. 187-200. New and Future Developments in Microbial Biotechnology and Bioengineering, Ed. Elsevier.
37 Shayevitz AM. 2018. Do oak barrels contribute to the variability of the microbiome of barrel-aged beers? Oregon State University.
38 Tenhovirta S. 2019. The effects of lactic acid bacteria species on properties of sour beer. University of Helsinki.
39 De Roos J, Verce M, Aerts M, Vandamme P, De Vuyst L. 2018. Temporal and spatial distribution of the acetic acid bacterium communities throughout the wooden casks used for the fermentation and maturation of lambic beer underlines their functional role. Appl. Environ. Microbiol. 84: e02846-02817.
40 Nikulin J, Vidgren V, Krogerus K, Magalhaes F, Valkeemaki S, Kangas-Heiska T, et al. 2020. Brewing potential of the wild yeast species Saccharomyces paradoxus. Eur. Food Res. Technol. 246: 2283-2297.   DOI