Browse > Article
http://dx.doi.org/10.5713/ajas.2011.10291

Bacterial Diversity at Different Sites of the Digestive Tract of Weaned Piglets Fed Liquid Diets  

Hong, Tran Thi Thu (Hue University of Agriculture and Forestry)
Passoth, Volkmar (Department of Microbiology, Uppsala Genetic Center, Swedish University of Agricultural Sciences)
Lindberg, Jan Erik (Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.6, 2011 , pp. 834-843 More about this Journal
Abstract
Bacterial diversity was studied using PCR-DGGE, cloning and sequencing. DNA was isolated from digesta samples from stomach, ileum and colon of 28 weaned piglets (Large White${\times}$Mong Cai) fed dry control feed, naturally fermented liquid feed (FE) and a liquid diet with inclusion of rice distiller's residue feed. General bacterial diversity was described using DGGE analysis of the V3 region of 16S rDNA. The microbial populations in the stomach and the ileum were considerably influenced by the diet, while only marginal effects were observed in the colon. There was a large variation of the microbial flora in the stomach between individuals fed non-fermented diets. In contrast, animals fed diet FE had a more uniform microbial flora in the stomach and the ileum compared to the other diets. In total 47 bands from the DGGE profiles were cloned. In stomach, most frequently lactic acid bacteria were found. Feeding diet FE resulted in the occurrence of Pediococcus species in stomach and ileum. In pigs fed the other diets, Lactobacillus gallinarum, Lactobacillus johnsonii and Lactobacillus fermentum were found in stomach and ileum. Most of the sequences of bands isolated from colon samples and several from ileum matched to unknown bacteria, which often grouped within Prevotellaceae, Enterobacteriaceae, Bacteroidaceae and Erysipelotrichaceae. This study demonstrates that fermented liquid feed affects bacterial diversity and the specific microflora in stomach and ileum, which provides a potential to modulate the gut microflora with dietary means to increase the abundance of beneficial bacteria and improve piglets' health.
Keywords
Pig Intestine; Microbial Diversity; Fermented Liquid Feed; PCR-DGGE; Piglets;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Thuy, N. D., H. C. Phu, X. N. Huyen, X. A. Tuan, N. V. Quy, S. J. Driesen, K. M. Townsend, J. J. C. Chin and D. J. Trott. 2006. Pathotypes and serogroups of enterotoxigenic Escherichia coli isolated from pre-weaning pigs in North Vietnam. J. Medical. Microbiol. 55:93-99.   DOI   ScienceOn
2 van Winsen, R. L., L. J. A. Lipman, S. Biesterveld, B. A. P. Urlings, J. M. A. Snijders and F. van Knapen. 2001a. Mechanism of Salmonella reduction in fermented pig feed. J. Sci. Food Agric. 81:342-346.   DOI   ScienceOn
3 van Winsen, R. L., B. A. P. Urlings, L. J. A. Lipman, J. M. A. Snijders, D. Keuzenkamp, J. H. M. Verheijden and F. van Knapen. 2001b. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl. Environ. Microbiol. 67:3071-3076.   DOI   ScienceOn
4 Varel, V. H. and J. T. Yen. 1997. Microbial perspective on fiber utilization by swine. J. Anim. Sci. 75:2715-2722.
5 von Wintzingerode, F., U. B. Gobel and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213-229.   DOI
6 Wang, H. F., W. Y. Zhu, W. Yao and J. X. Liu. 2007. DGGE and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice. Anaerobe 13:127-133.   DOI   ScienceOn
7 Zoetendal, E. G., A. D. L. Akkermans and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.
8 Pluske, J. R., W. David, D. W. Pethick, D. E. Hopwood and D. J. Hampson. 2005. Nutritional influences on some major enteric bacterial diseases of pigs. Nutr. Res. Rev. 15:333-371.
9 Ranald, D. A. 2000. A review of the industrialization of pig production worldwide with particular reference to the Asian region. Focus is on clarifying the animal and human health risks and reviewing the Area Wide Integration concept of specialized crop and livestock activities. Cameron B.V.Sc., M.V.Sc., Ph.D, Brisbane Australia, May 2000.
10 Sambrook, J. and D. W. Russell. 2001. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
11 Scholten, R. H. J., C. M. C. van der Peet-Schwering, L. A. den Hartog, M. Balk, J. W. Schrama and M. W. A. Verstegen. 2002. Fermented wheat in liquid diets: Effects on gastrointestinal characteristics in weanling piglets. J. Anim. Sci. 80:1179-1186.
12 Suau, A., R. Bonnet, M. Sutren, J. J. Godon, G. R. Gibson, M. D. Collins and J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65:4799-4807.
13 Scholten, R. H. J., C. M. C. van der Peet-Schwering, M. W. A. Verstegen, L. A. den Hartog, J. W. Schrama and P. C. Vesseur. 1999. Fermented co-products and fermented compound diets for pigs: a review. Anim. Feed Sci. Technol. 82:1-19.   DOI   ScienceOn
14 Simpson, J. M., V. J. McCracken, H. R. Gaskins and R. I. Mackie. 2000. Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl. Environ. Microbiol. 66:4705-4714.   DOI
15 Simpson, J. M., V. J. McCracken, B. A. White, H. R. Gaskins and R. I. Mackie. 1999. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Methods 36:167-179.   DOI   ScienceOn
16 Leser, T. D., R. H. Lindecrona, T. K. Jensen, B. B. Jensen and K. Møller. 2000. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl. Environ. Microbiol. 66:3290-3296.   DOI
17 Levy, S. B. 1982. Microbial resistance to antibiotics. An evolving and persistent problem. Lancet 2:83-88.
18 MARD. 2003. Farmer need study. Ministry of Agriculture and Rural Development (MARD), United Nations Development Programme (UNDP) Project VIE/98/004/B/01/99. (http://www.isgmard.org.vn/Information%20Service/Report/General/Famer%20Needs%20Study.pdf)
19 Naum, M., E. W. Brown and J. M. Mason-Gamer. 2008. Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae? J. Mol. Evol. 66:630-642.   DOI
20 Muyzer, G., E. C. de Waal and A. G. Uitterlinden. 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis. Analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
21 Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
22 Olstorpe, M., K. Lyberg, J. E. Lindberg, J. Schnürer and V. Passoth. 2008. Population diversity of yeasts and lactic acid bacteria in pig feed fermented with whey, wet wheat distillers' grains, or water at different temperatures. Appl. Environ. Microbiol. 74:1696-1703.   DOI   ScienceOn
23 Pedersen, C., S. Ross, H. Jonsson and J. E. Lindberg. 2005. Performance, feeding behaviour and microbial diversity in weaned piglets fed liquid diets based on water or wet wheat-distillers grain. Arch. Anim. Nutr. 59:165-179.   DOI   ScienceOn
24 Hansen, L. L., L. L. Mikkelsen, H. Agerhem, A. Laue, M. T. Jensen and B. B. Jensen. 2000. Effect of fermented liquid food and zinc bacitracin on microbial metabolism in the gut and sensoric profile of m. longissimus dorsi from entire male and female pigs. Anim. Sci. 71:65-80.
25 Henriksson, A., L. Andre and P. L. Conway. 1995. Distribution of lactobacilli in the porcine gastrointestinal tract. FEMS Microbiol. Ecol. 16:55-60.   DOI
26 Konstantinov, S. R., A. Awati, H. Smidt, B. A. Williams, A. D. Akkermans and W. M. de Vos. 2004. Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Appl. Environ. Microbiol. 70:3821-3830.   DOI   ScienceOn
27 Hill, J. E., S. M. Hemmingsen, B. G. Goldade, T. J. Dumonceaux, J. Klassen, R. T. Zijlstra, S. H. Goh and A. G. Van Kessel. 2005. Comparision of ileum microflora of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and quantitative PCR. Appl. Environ. Microbiol. 71:867-875.   DOI   ScienceOn
28 Hojberg, O., N. Canibe, B. Knudsen and B. B. Jensen. 2003. Potential rates of fermentation in digesta from the gastrointestinal tract of pigs: Effect of feeding fermented liquid feed. Appl. Environ. Microbiol. 69:408-418.   DOI
29 Hong, T. T. T., T. T. Thuy, V. Passoth and J. E. Lindberg. 2009. Gut ecology, feed digestion and performance in weaned piglets fed liquid diets. Livest. Sci. 125:232-237.   DOI   ScienceOn
30 Konstantinov, S. R., W. Y. Zhu, B. A. Williams, S. Tamminga, W. M. de Vos and A. D. L. Akkermans. 2003. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol. Ecol. 43:225-235.   DOI
31 Leser, T. D., J. Z. Amenuvor, T. K. Jensen, R. H. Lindecrona, M. Boye and K. Møller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673-690.   DOI
32 Canibe, N. and B. B. Jensen. 2003. Fermented and nonfermented liquid feed to growing pigs: Effect on aspects of gastrointestinal ecology and growth performance. J. Anim. Sci. 81:2019-2031.
33 Ercolini, D., G. Moschetti, G. Blaiotta and S. Coppola. 2001. Behaviour of variable V3 region from 16S rDNA of Lactic acid bacteria in denaturing gradient gel electrophoresis. Curr. Microbiol. 42:199-202.   DOI
34 Collier, C. T., M. R. Smiricky-Tjardes, D. M. Albin, J. E. Wubben, V. M. Gabert, B. Deplancke, D. Bane, D. B. Anderson and H. R. Gaskins. 2003. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoter. J. Anim. Sci. 81:3035-3045.
35 Donskey, C. J., A. M. Hujer, S. M. Das, N. J. Pultz, R. A. Bonomo and L. B. Rice. 2003. Use of denaturing gradient gel electrophoresis for analysis of the stool microbiota of hospitalized patients. J. Microbiol. Methods 54:249-256.   DOI   ScienceOn
36 Durmic, Z., D. W. Pethick, J. R. Pluske and D. J. Hampson. 1998. Changes in bacterial populations in the colon of pigs fed different sources of dietary fibre, and the development of swine dysentery after experimental infection. J. Appl. Microbiol. 85:574-582.   DOI   ScienceOn
37 Fuller, R., P. A. Barrow and B. E. Brooker. 1978. Bacteria associated with the gastric epithelium of neonatal pigs. Appl. Environ. Microbiol. 35:582-591.
38 Gafan, G. D. and D. A. Spratt. 2005. Denaturing gradient gel electrophoresis gel expansion (DGGEGE)- An attempt to resolve the limination of co-migration in the DGGE of complex polymicrobial communities. FEMS Microbiol. Lett. 253:303-307.   DOI   ScienceOn
39 Giancamillo, A. D., F. Vitari, G. Savoini, V. Bontempo, C. Bersani, V. Dell'Orto and C. Domeneghini. 2008. Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets. A qualitative and quantitative micro-anatomical study. Histol. Histopathol. 23:651-664.
40 Bates, J., J. Z. Jordens and J. B. Selkon. 1993. Evidence for an animal origin of ancomycin-resistant enterococci. Lancet 342:490-491.
41 Berger, B., R. D. Pridmore, C. Barretto, F. Delmas-Julien, K. Schreiber, F. Arogoni and H. Brussow. 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasis analysis and comparative genomics. J. Bacteriol. 189:1311-1321.   DOI   ScienceOn