• Title/Summary/Keyword: Pedestrian Model

Search Result 306, Processing Time 0.024 seconds

Advanced PersonNet for Person Re-Identification (사람 재인식을 위한 개선된 PersonNet)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1166-1174
    • /
    • 2019
  • This paper propose and experiment advanced PersonNet, a human identification model, with advanced performance. We apply the inception layer to extract feature points, and increase the existing 32 feature points to 154. Also, we modify the CND method used by PersonNet to mitigate asymmetry, and apply weights to the feature map of pedestrian images in three parts, thereby making the features more distinct. Three databases were used for performance evaluation : CUHK01, CUHK03 and Market-1501. The experiment results showed 27-31% improvement in performance.

Form of Master Plan according to the Change of the Times - An Influence of Educational Policy and Managing Organization - (대학(大學) 마스터플렌 형성(形成)의 시대적(時代的) 변천(變遷)에 관한 연구(硏究) - 정책(政策) 및 조직(組織)의 마스터플렌 형성(形成)에 미치는 영향(影響)에 관하여 -)

  • Min, Chang-Kee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2002
  • This paper is to evaluate the campus master plan, which is influenced by Korean educational policy and managing organization, with respect to land use and block plans of buildings. It uses a case study method to periodically know specific details to form a master plan. It is found, at first, that design method of master plan was influenced by some educational policies and managing organization of ministry of education. Secondly, design methods have been changed according to the change of the times. Any master plan was not formulated until the 1960s. Seoul National University formed a master plan adopting radiated sector pattern for land use and a block plan in the early years of the 1970s. Chungnam National University used a squared space style with a trouble of the learned from the SNU design methods in the year 1974. A concept of axis according to topography] in Andong National University and environmental preservation in Yiosu National University was used in the 1980s. Korean Athletic Educational University used a transportation model for facilitating efficiency to use university land and making pedestrian convenient by classification with fast and slow walker's way.

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Gender Differences in Influence of Socio-demographic Characteristics on Mode Choice in India

  • SAIGAL, Taru;VAISH, Arun Kr.;RAO, N.V.M.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.531-542
    • /
    • 2021
  • The study aims to investigate differences between men and women in influence of various socio-demographic factors on choice of mode of transport. For this purpose, a binary logit model of choice probabilities is implemented on survey data of a developing country city. Results indicate women's choice of travel mode to be more environment-friendly than that of men. Well-educated, working and middle-aged individuals appear to be the most likely to choosing more-polluting modes of transport for frequent travelling purposes. Individuals in the sample who are the least socioeconomically well off are found the most likely to be promising for the environment. The findings of this study suggest the future transportation policies toward development of existing infrastructure of greener modes of transportation in the city such as, public transportation services and pedestrian lanes, so as to manage the rising issues of degrading environmental quality. The study highlights how the consideration and inclusion of socio-demographic factors is crucial for policy recommendation regarding curtailing the environmental damages contributed by transportation sector. Because mobility crucially affects all other indicators of empowerment, and women are the ones using green modes extensively, the city's transportation system should be so developed which gives their safety and security due importance.

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

A Fast Background Subtraction Method Robust to High Traffic and Rapid Illumination Changes (많은 통행량과 조명 변화에 강인한 빠른 배경 모델링 방법)

  • Lee, Gwang-Gook;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.417-429
    • /
    • 2010
  • Though background subtraction has been widely studied for last decades, it is still a poorly solved problem especially when it meets real environments. In this paper, we first address some common problems for background subtraction that occur in real environments and then those problems are resolved by improving an existing GMM-based background modeling method. First, to achieve low computations, fixed point operations are used. Because background model usually does not require high precision of variables, we can reduce the computation time while maintaining its accuracy by adopting fixed point operations rather than floating point operations. Secondly, to avoid erroneous backgrounds that are induced by high pedestrian traffic, static levels of pixels are examined using shot-time statistics of pixel history. By using a lower learning rate for non-static pixels, we can preserve valid backgrounds even for busy scenes where foregrounds dominate. Finally, to adapt rapid illumination changes, we estimated the intensity change between two consecutive frames as a linear transform and compensated learned background models according to the estimated transform. By applying the fixed point operation to existing GMM-based method, it was able to reduce the computation time to about 30% of the original processing time. Also, experiments on a real video with high pedestrian traffic showed that our proposed method improves the previous background modeling methods by 20% in detection rate and 5~10% in false alarm rate.

Estimating an Optimal Scale of a Railway Station with Non-Passengers (철도 비승차 이용객을 고려한 역사 시설물별 적정규모 산정방안)

  • Oh, Tae ho;Lee, Seon ha;Kang, Hee up;Insigne, Maria Sharlene L.;Lee, Sang Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.76-91
    • /
    • 2017
  • The Area of a domestic railway station is designed based on the 4-step traffic demand forecasting model with the average daily passenger count as one of its parameter. However, nowadays, due to increasing rate of railway station's function, the non-passengers are increasing. In order to consider those non-passengers who aren't using trains, assumed volume are added to the average daily passenger count of station to estimate the area, but the criteria being applied has no concrete basis. Therefore, this study aimed to recalculate the increasing non-passenger rate based on actual survey data of station users in any type of railway station to obtain the optimum area. Subsequently, the the design area was performed through pedestrian simulation. According to the result of the simulation, it was found that the total space of the exciting railway stations can be reduced up to 45% and will still satisfy the level of service(LOS) requirement.

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.