• Title/Summary/Keyword: Peak position shifts

Search Result 15, Processing Time 0.028 seconds

An investigation of the Reynolds Number dependence of the Axisymmetric Jet Mixing Layer using the Proper Orthogonal Decomposition

  • Jung, Dae-Han;George, William K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.423-425
    • /
    • 2001
  • The Proper Orthogonal Decomposition (POD) technique was applied to investigate the effects of Reynolds number and the characteristics of the organized motions or coherent structures as a function of downstream position from x/D=2 to 6 in a turbulent axisymmetric shear layer at Reynolds numbers of 78,400, 117,600, and 156,800. Data were collected simultaneously using the 138 hot-wire probe used by Citriniti and George (2000). The POD was then applied to a double Fourier transform in time and azimuthal direction of the double velocity correlation tensor. The lowest azimuthal mode for all POD modes, which dominated the dynamics at x=D = 3 in the previous experiments, dies off rapidly downstream. This is consistent with a trend toward homogeneity in the downstream evolution, and suggests that some residual value may control the growth rate of the far jet. On the other hand, for the higher azimuthal modes, the peak shifts to lower mode numbers and actually increases with downstream distance. These mixing layer data, normalized by similarity variables for the mixing layer, collapse at all downstream positions and are nearly independent of Reynolds numbers.

  • PDF

In Co-Doping Effect on the Optical Properties of P-Type GaN Epilayers (In 코도핑 된 p-GaN의 광학적 특성)

  • An, Myung-Hwan;Chung, Ho-Yong;Chung, Sang-Jo
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.450-453
    • /
    • 2008
  • Mg-doped and In-Mg co-doped p-type GaN epilayers were grown in a low-pressure metal organic chemical vapor deposition technique. The effect of In doping on the p-GaN layer was studied through photoluminescence (PL), persistent photoconductivity (PPC), and transmission electron microscopy (TEM) at room temperature. For the In-doped p-GaN layer, the PL intensity increases significantly and the peak position shifts to 3.2 eV from 2.95 eV of conventional p-GaN. Additionally, In doping greatly reduces the PPC, which was very strong in conventional p-GaN. A reduction in the dislocation density is also evidenced upon In doping in p-GaN according to TEM images. The improved optical properties of the In-doped p-GaN layer are attributed to the high crystalline quality and to the active participation of incorporated Mg atoms.

NMR study of the interaction of T$_4$ Endonuclease V with DNA

  • 이봉진;유준석;임형미;임후강
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.267-267
    • /
    • 1994
  • In order to obtain insight into the mechanism by which DNA containing a thymine photo-dimer is recognized by the excision repair enzyme, T$_4$ endonuclease V, we have taken NMR study of this protein and its complex with oligonucleotides. The conformations of five different DNA duplexes DNA I : d(GCGGATGGCG).d(CGCCTACCGC), DNA II d(GCGGTTGGCG) .d(CGCCAACCGC), DNA III : d(GCGGT ^ TGGCG) .d(CGCCAACCGC), DNA IV d(GCGGGCGGCG).d(CGCCCGCCGC) and DNA V d(GCGGCCGGCG) . d(CGCCGGCCGC) were studied by $^1$H NMR. The NMR spectra of these five DNA duplexes in the absence of the enzyme clearly show that the formation of a thymine dimer within the DNA induces only a minor distortion in the structure, and that the overall structure of B type DNA is retained. The photo-dimer formation is found to cause a large change in chemical shifts at the GC7 base pair, which is located at the 3'-side of the thymine dimer, accompanied by the major conformational change at the thymine dimer site. The binding of a mutant T$_4$ endonuclease V (E23Q), which is unable to digest DNA containing a thymine dimer, to the DNA duplex d(GCGGT ^ TGGCG)ㆍd(CGCCAACCGC) causes a large down-field shift in the imino proton resonance of GC7. Therefore, this position is thought to be either the crucial point of the interaction wi th T$_4$ endonuclease V, or the si to of a conformational change in the DNA caused by the binding of T$_4$ endonuclease V. Usually, it is very difficult to assign NMR peaks in DNA * protein complex because of severe peak overlaps. In order to overcome these peak overlaps, we used a method of deuterium incorporation.

  • PDF

Preparation and Luminescent Property of Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1) Phosphors (Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1)의 합성과 형광특성)

  • Kim, Yeo-Jin;Park, Sang-Moon
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.644-649
    • /
    • 2011
  • [ $A_{3-2x/3}Al_{1-z}In_{z}O_4F:Eu_x^{3+}$ ](A = Ca, Sr, Ba, x = -0.15, z = 0, 0.1) oxyfluoride phosphors were simply prepared by the solid-state method at $1050^{\circ}C$ in air. The phosphors had the bright red photoluminescence (PL) spectra of an $A_{3-2x/3}Al_{1-z}In_{z}O_4F$ for $Eu^{3+}$ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positions and calculating unit-cell parameters. Dynamic excitation and emission spectra of $Eu^{3+}$ activated red oxyfluoride phosphors were clearly monitored. Red and blue shifts gradually occurred in the emission spectra of $Eu^{3+}$ activated $A_3AlO_4F$ oxyfluoride phosphors when $Sr^{2+}$ by $Ca^{2+}$ and $Ba^{2+}$ ions were substituted, respectively. The concentration quenching as a function of $Eu^{3+}$ contents in $A_{3-2x/3}AlO_4F:Eu^{3+}$ (A = Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced $A_{3-2x/3}Al_{1-z}In_{z}O_{4-{\alpha}}F_{1-{\delta}}$ phosphors with $Eu^{3+}$ activator are discussed based on PL spectra and CIE coordinates. Substituting $In^{3+}$ into the $Al^{3+}$ position in the $A_{3-2x/3}AlO_4F:Eu^{3+}$ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing by seven times.

Effect of Spinning Speed on 29Si and 27Al Solid-state MAS NMR Spectra for Iron-bearing Silicate Glasses (시료의 회전 속도가 함철 비정질 규산염의 고상 NMR 신호에 미치는 영향)

  • Kim, Hyo-Im;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.295-306
    • /
    • 2018
  • Despite the utility of solid-state NMR, NMR studies of iron-bearing silicate glasses remain a challenge because the variations in the peak position and width with increasing iron content reflect both paramagnetic effect and iron-induced structural changes. Therefore, it is essential to elucidate the effect of temperature on the NMR signal for iron-bearing silicate glasses. Here, we report the $^{29}Si$ and $^{27}Al$ MAS NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ and $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ (anorthite) glasses with varying spinning speed to interpret the NMR spectra for iron-bearing silicate glasses. The increase in the spinning speed results in an increase in the sample temperature. The current NMR results allow us to understand the origins of the changes in NMR signal with increasing iron content and to provide information on the dipolar interaction between nuclear spins. The $^{29}Si$ NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ glass and $^{27}Al$ NMR spectra for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses show that the peak shape and position of iron-bearing glasses do not change with increasing spinning speed up to 30 kHz. These results suggest that the NMR signal in the Fe-bearing glasses may stem from the 'survived nuclear spins' beyond the cutoff radius from the Fe, not from the paramagnetic shift. Based on the current results, the observed apparent shifts toward lower frequency of Al peak for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses with increasing $Fe_2O_3$ at all spinning speed (15 kHz to 30 kHz) indicate the increase in the fraction of ${Q^4}_{Al}$(nSi) with lower n (i.e., 1 or 2) with increasing $Fe_2O_3$ and the spatial proximity between Fe and ${Q^4}_{Al}$(nSi) with higher n (i.e., 3 or 4). The present results show that changes in the NMR signal for iron-bearing silicate glasses reflect the actual iron-induced structural changes. Thus, it is clear that the applications of solid-state NMR for iron-bearing silicate glasses hold strong promise for unraveling the atomic structure of natural silicate glasses.