• Title/Summary/Keyword: Peak performance

Search Result 2,238, Processing Time 0.029 seconds

Evaluation on Reducing Peak Cooling Load Based on Dynamic Load Model of Building Perimeter Zones (건물의 외주부 존에 대한 동적 부하모델 이용 피크냉방부하 저감효과 분석)

  • Lee, Kyoung-Ho;Brau, James E.
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, inverse building modeling was applied to building perimeter zones which have different window orientation. Two test zones of east-facing and west-facing zones in ERS(Energy Resource Station) building, which is representative of small commercial building, was used to test performance of cooling load calculation and peak cooling load reduction. The dynamic thermal load model for the east and west zone was validated using measured data for the zones and then it was used to investigate the effect of peak cooling load reduction by adjustment of indoor cooling temperature set points during on-peak time period. For the east zone, the peak load can be reduced to about 60% of the peak load for conventional control even without any precooling. For the west zone, PLR is nearly independent of the start of the on-peak period until a start time of 1pm. Furthermore, PLR has a small dependence on the precooling duration. Without any precooling, the peak cooling load can be reduced to about 35% of the peak load associated with conventional control.

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

Performance Analysis of PAPR and LS Estimation in OFDM Systems

  • Khan, Latif Ullah
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.135-141
    • /
    • 2014
  • The inherent feature of the highly efficient spectrum usage has made Orthogonal Frequency Division Multiplexing (OFDM) preferable for Communication Standards. This study evaluated the performance of a Least Square (LS) estimator for a comb-type pilot insertion scheme over a fast fading Rayleigh channel. A High Peak-to-Average Power Ratio (PAPR) is one of the major downsides of the OFDM. The effects of an increase in the number of subcarriers on PAPR and the performance of the LS Estimator were studied. Increasing the number of subcarriers while keeping the pilots overhead constant resulted in improved performance of the LS estimator but the PAPR increased with increasing number of subcarriers. Therefore some trade-off between the number of subcarriers and the performance of the OFDM system is needed. The Mean Square Error (MSE) expression was also derived for the LS estimator in the case of a comb-type pilot arrangement. The MSE expression clearly explains the effects of the number of subcarriers on the performance of the LS estimator.

Performance Analysis for Secured Service Signals of RNSS Systems

  • Han, Kahee;Lee, Subin;Lee, Kihoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.341-349
    • /
    • 2022
  • When designing a new RNSS signal, the performance analysis for the legacy signal providing the same service, is required to determine the performance requirements. However, there are few studies on the secured service (SS) signal performance analysis, and the waveform is the only published information on the signal design component of the SS signal. Therefore, in this paper, we introduce several figures-of-merit (FoMs) that can be used for performance analysis in terms of the waveform. And then, we calculate the FoMs, such as autocorrelation main peak to secondary peak ratio (AMSR), spectral efficiency, Gabor bandwidth, multipath error, and jamming resistance quality factor, for the existing SS signals and discuss the analysis results. Finally, we conclude that the superior waveform for each FoM is different, and that the consideration of the trade-off relationship between the FoMs is required for waveform design.

Evaluation and Analysis of Scheduling Algorithms for Peak Power Reduction (전력 피크 감소를 위한 스케줄링 알고리즘의 성능 평가 및 분석)

  • Sung, Minyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2777-2783
    • /
    • 2015
  • Peak power reduction is becoming increasingly important not only for grid operators but also for residential users. The scheduling of electric loads tries to reduce the power peak by splitting the power-on period of an electric device into multiple smaller ones and by interleaving the on-periods of every device in a holistic way. This paper analyzes the performance of EDF, LSF, TCBM, and lazy scheduling algorithms and proposes the enhancement schemes. For analysis, we have implemented the scheduling policies in a simulation environment for distributed control systems. Through extensive experiments using real power traces, we discuss their performance characteristics in terms of power deviation, switch count, and temperature violation ratio. To prevent excessive switching, we propose to employ the concept of limited preemptibility and evaluate its effect on performance. It is found that the best performance is achieved when the scheduler capacity is dynamically adjusted to the actual power demand. The experiment results show that, by load scheduling, the probability of having a power deviation greater than 150W is reduced from 21.5% down to 3.2%.

An Experimental Study on Thermal Storage Performance of an Air Conditioning System with Slab Thermal Storage (슬래브축열 공조시스템의 축열성능에 관한 실험적 연구)

  • Jung Jae-Hoon;Shin Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • This paper investigates the thermal storage performance of the office building which has adopted an air conditioning system with its slab structure as a regenerator. Four cases of the thermal storage performance experiment were conducted. Room air temperatures, floor slab temperatures, temperatures around the air conditioning unit were logged and analyzed. The load handling capacity of the air conditioning unit and the amount of heat stored in the slab were decided from those experiments. Several efficiencies were investigated to evaluate the performance of the thermal storage. The results concluded that the slab as a regenerator is very effective in cutting down peak loads of the office building.

Performance Prediction of solenoid Actuated Hydrogen Injector (솔레노이드 구동 수소인젝터의 성능예측)

  • 이형승;이용규;김한조;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.174-185
    • /
    • 1997
  • The performance of the solenoid actuated hydrogen injector and the capacitive peak-hold type driving circuit was predicted through the modeling of the injector and the driving circuit the modeling was composed of the driving circuit, the solenoid, the moving parts of the injector, and the hydrogen injection system. The performance of the injector through the modeling was compared with the results of the solenoid and injector rig tests, and those were consistent with each other. Through the prediction of the injector performance, the effects of the components such as electrical resistor, capacitor, and injector spring are easily known to the injector performance required.

  • PDF

Performance Evaluation of a Windowed-Sinc Function-Based PAPR Reduction Scheme for OFDM Polar Transmitters (OFDM polar transmitter를 위한 windowed-sinc 함수 기반의 PAPR 감소기법의 성능평가)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The polar transmitter is applied to the narrowband communication systems such as GSM (Global System for Mobile Communications), EDGE (Enhanced Data Rates for GSM Evolution), and GPRS (General Packet Radio Service). To apply polar transmitter for the wideband communication like OFDM (Orthogonal Frequency Division Multiplexing) where the high PAPR (Peak-to-Average Power Ratio) problem occurs, this paper proposes a windowed-sinc function based PAPR reduction scheme. The proposed algorithm mitigates the effect of excessive suppression due to successive peaks or relatively high peaks of the signal. The BER (Bit Error Rate) and EVM (Error Vector Magnitude) performances are measured for various window types and lengths. The simulation results demonstrate that the proposed algorithm achieves significant improvement in terms of BER and PAPR reduction performance with similar spectrum performance to the conventional peak windowing scheme.

Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System (신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측)

  • Bang, Young-Keun;Kim, Jae-Hyoun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

Development of Daily Operation Program of Battery Energy Storage System for Peak Shaving of High-Speed Railway Substations (고속철도 변전소 피크부하 저감용 ESS 일간 운전 프로그램 개발)

  • Byeon, Gilsung;Kim, Jong-Yul;Kim, Seul-Ki;Cho, Kyeong-Hee;Lee, Byung-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.404-410
    • /
    • 2016
  • This paper proposed a program of an energy storage system(ESS) for peak shaving of high-speed railway substations The peak shaving saves cost of equipment and demand cost of the substation. To reduce the peak load, it is very important to know when the peak load appears. The past data based load profile forecasting method is easy and applicable to customers which have relatively fixed load profiles. And an optimal scheduling method of the ESS is helpful in reducing the electricity tariff and shaving the peak load efficiently. Based on these techniques, MS. NET based peak shaving program is developed. In case study, a specific daily load profile of the local substation was applied and simulated to verify performance of the proposed program.