• Title/Summary/Keyword: Peak flow distribution

Search Result 162, Processing Time 0.022 seconds

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

Forced Convection Cooling Across Rectangular Blocks in a Parallel Channel (블럭이 부착된 수평 유로에서의 강제대류 열전달 해석)

  • 조한승;유재석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.251-257
    • /
    • 1993
  • The purpose of this study is to obtain an improved interpretation of heat transfer phenomena between blocks and fluids in the parallel conducting plates. Flow is two-dimensional, incompressible steady laminar flow over rectangular blocks, representing finite heat source on parallel plate. Heat transfer phenomena, temperature of blocks and heat transfer into the flow field are investigated for different spacings between blocks and Reynolds numbers. Results indicate that Nusselt number on the far upstream corner of the block was higher than that of any part of the block. As Reynolds number and spacings of blocks increased, Nusselt number increased. The distribution of local Nusselt number on the top surface of the conducting plate is similar to the case with insulated plate. Temperature of the block which has heat source in half cubage was approximately twice as high as temperature of the block which has heat source in whole cubage. As Reynolds number and spacings of blocks increased, overall temperature decreased. The peak value of block temperature occurred at position shifted to the right or upper right from center. The maximum temperature of block can be expressed as a function of Reynolds number, spacings between blocks, position of maximum temperature of each block and then it is possible to predict the maximum temperature of blocks.

  • PDF

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids (정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구)

  • Kim, Sang-Su;Gu, Bon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Bivariate Rainfall Frequency Analysis and Rainfall-runoff Analysis for Independent Rainfall Events (독립 호우사상에 대한 이변량 강우빈도해석 및 강우-유출해석)

  • Park, Cheol-Soon;Yoo, Chul-Sang;Jun, Chang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.713-727
    • /
    • 2012
  • In this study, the bivariate frequency analysis of the independent annual rainfall event series was done to be used for the runoff analysis, whose results were also compared with those from the conventional univariate frequency analysis. This study was applied to three differently-sized basins such as the Joongryang Stream, Chunggye Stream, and Ooyi Stream. The Clark model was used as the runoff model, and the SCS method was applied for the calculation of the effective rainfall. The alternating block method and the Huff method were considered to be compared for the temporal distribution of rainfall event. Summarizing the results are as follows. (1) The difference between the univariate and bivariate frequency analysis results were large when the rainfall duration was short, but significantly decreased as the rainfall duration increased. The univariate frequency analysis results were bigger when the rainfall duration was short, but smaller in opposite case. (2) The peak flow derived by applying the alternating block method was bigger than that by the Huff method. Also, the peak flow when applying the alternating block method increased as the rainfall duration increased, but converged smoothly around the rainfall duration of 24 hours. (3) For the Joongryang Stream, when applying the Huff method, the peak flow derived for the bivariate frequency analysis was bigger than that for the univariate case, but for the other two basins, the results were opposite. When applying the alternating block method, the results were consistent for all three basins that the peak flow derived by applying the bivariate frequency analysis was bigger than those by the univariate frequency analysis.

An Experimental Study on the Control of the Combustion Rate by Temperature Control of Gas Entrained into the Filter in Burner-Type Particulate Trap (버너방식 DPF 시스템에서 가스온도 제어를 통한 입자상물질 연소율제어의 실험적 검증)

  • Park, D. S.;Kim, J. U.;Cho, H.;Kim, E. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.130-141
    • /
    • 1997
  • Work on the reduction of particulate matter(PM) from a diesel vehicl has led to a new trp system and a control method to control the combustion rate of the PM filtrated in the trap, which was named as 'Active Exhaust Feeding Regeneration(AEFR) System' by its operation mechanism. Ceramic cordierite filter is a major component of the trap and susceptible to thermal shock. Therefore the system should be designed to reduce the peak temperature and temperature gradients in the trap ; these have been considered to be the main factors causing thermal shock of the filter during the regeneration. It uses the engine's exhaust gas partially for the regeneration of the ceramic filter. It controlled bypass flow rate of the engine's exhaust gas precisely to control the temperature of the gas entrained into the filter. Gas temperatures were measured inside filter, and the oxygen concentration at the outlet of the filter was also monitored during the regeneration to analyze the combustion process of the PM. The temperature distributions and temperature gradients in the filter during the regeneration varied widely according to the regeneration control schemes. Finally, this system shows relatively low peak temperature and temperature gradients in the filter during its regeneration. It is considered that this system uses a mew method to control the combustion rate of the PM, which is different from the methods used in the previous studies.

  • PDF

Different Types of Active Region EUV Bright Points by Hinode/EIS

  • Lee, Kyoung-Sun;Moon, Yong-Jae;Kim, Su-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.28.2-28.2
    • /
    • 2010
  • We have investigated seven Extreme-Ultraviolet (EUV) bright points in the active region (AR 10926) on 2006 December 2 by the EUV imaging spectrometer (EIS) onboard Hinode spacecraft. We determined their Doppler velocities and non-thermal velocities from 15 EUV spectral lines (log T=4.7-7.2) by fitting each line profile to a Gaussian function. We present the Doppler velocity map as a function of temperature which corresponds to a different height. As a result, these active region bright points show two different types of characteristics. Type 1 bright point shows a systematic increase of Doppler velocity from -68 km/s (blue shift) at log T=4.7 to 27 km/s (red shift) at log T=6.7, while type 2 bright points have Doppler velocities in the range of -20 km/s and 20 km/s. Using MDI magnetograms, we found that only type 1 bright point was associated with the canceling magnetic feature at the rate of $2.4{\times}10^{18}$ Mx/hour. When assuming that these bright points are caused by magnetic reconnection and the Doppler shift indicates reconnection out flow, the pattern of the Doppler shift implies that type 1 bright point should be related to low atmosphere magnetic reconnection. We also determined electron densities from line ratio as well as temperatures from emission measure loci using CHIANTI atomic database. The electron densities of all bright points are comparable to typical values of active regions (log Ne=9.9-10.4). For the temperature analysis, the emission loci plots indicate that these bright points should not be isothermal though background is isothermal. The DEM analysis also show that while the background has a single peak distribution (isothermal), the EUV bright points, double peak distributions.

  • PDF

Calculation of Direct Runoff Hydrograph considering Hydrodynamic Characteristics of a Basin (유역의 동수역학적 특성을 고려한 직접유출수문곡선 산정)

  • Choi, Yun-Ho;Choi, Yong-Joon;Kim, Joo-Cheol;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • In this study, after the target basin was divided into both overland and channel grids, the travel time from center of each grid cell to watershed's outlet was calculated based on the manning equation. Through this process, volumetric discharge was calculated according to the isochrones and finally, the direct runoff hydrograph was estimated considering watershed's hydrodynamic characteristics. Sanseong subwatershed located in main stream of Bocheong basin was selected as a target basin. The model parameters are only two: area threshold and channel velocity correction factor; the optimized values were estimated at 3,800 and 3.3, respectively. The developed model based on the tuned parameters led to well-matching results between observed and calculated hydrographs (mean of absolute error of peak discharge: 3.41%, mean of absolute error of peak time: 0.67 hr). Moreover, the analysis results regarding histogram of travel time-contribution area demonstrates that the proposed model characterizes relatively well hydrodynamic characteristics of the catchment due to effective rainfall.

Measurement of Turbulence Properties at the Time of Flow Reversal Under High Wave Conditions in Hujeong Beach (후정해변 고파랑 조건하에서 파랑유속 방향전환점에서 발생하는 난류성분의 측정)

  • Chang, Yeon S.;Do, Jong Dae;Kim, Sun-Sin;Ahn, Kyungmo;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.206-216
    • /
    • 2017
  • The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.

Influence of time-of-day on respiratory function in normal healthy subjects

  • Kwon, Yong Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.6
    • /
    • pp.374-378
    • /
    • 2013
  • Purpose: Human body have biological rhythmic pattern in a day, which is affected by internal and external environmental factors. We investigated whether respiratory function was fluctuated according to the influence of time-of-day (around at 9 am, 1 pm, and 6 pm) in health subjects, using pulmonary function test (PFT). Methods: Eighteen healthy volunteers (8 men, mean ages; $22.4{\pm}1.6$, mean heights; $166.61{\pm}9.60$, mean weight; $59.3{\pm}10.3$) were recruited. Pulmonary function test (PFT) was measured at three time points in day, around 9 am, 1 pm, and 6 pm in calm research room with condition of under 55dB noise level, using a spirometer (Vmax 229, SensorMecis, USA). Forced vital capacity (FVC), forced expiratory volume at one second (FEV1), FVC/FEV1, and peak expiratory flow (PEF) were acquired. Results: In comparison of raw value of PFT among three time points, subjects showed generally better respiratory function at 9 am, than at other points, although no significance was found. In comparison of distribution of ranking for respiratory function in each individual, only PEF showed significant difference. In general, distributional ratio of subjects who showed best performance of respiratory function in a day was high. Conclusion: These findings showed that circadian rhythm by diurnal pattern was not detected on respiratory function throughout all day. But, best performance on respiratory function was observed mostly in the morning, although statistical significance did not exist.