• Title/Summary/Keyword: Peak detection

Search Result 942, Processing Time 0.025 seconds

A New Algorithm for P_wave Detection in the ECG signal (심전도 신호 P파 검출 알고리즘에 관한 연구)

  • Joang, Hee-Kyo;Kim, Kwang-Keun;Hwang, Sun-Chul;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.15-18
    • /
    • 1989
  • This paper presents a new algorithm for P-wave detection in the ECG signal. We detect the peak and valley point using significant point extraction algorithm with 9-point derivative. Because P-wave duration is changed according to heart-rates, we search for the R-peak and calculate the R-R interval time prior to the determination of P-wave duration threshold values in order to actively adapt to the change of P duration. We determine the parameters for P-wave detection and then P-peak, P-onset and P-offset are detected by these parameters. The results obtained from the proposed algorithm have detected successively P-wave almost more than 90%.

  • PDF

Noise-robust electrocardiogram R-peak detection with adaptive filter and variable threshold (적응형 필터와 가변 임계값을 적용하여 잡음에 강인한 심전도 R-피크 검출)

  • Rahman, MD Saifur;Choi, Chul-Hyung;Kim, Si-Kyung;Park, In-Deok;Kim, Young-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.126-134
    • /
    • 2017
  • There have been numerous studies on extracting the R-peak from electrocardiogram (ECG) signals. However, most of the detection methods are complicated to implement in a real-time portable electrocardiograph device and have the disadvantage of requiring a large amount of calculations. R-peak detection requires pre-processing and post-processing related to baseline drift and the removal of noise from the commercial power supply for ECG data. An adaptive filter technique is widely used for R-peak detection, but the R-peak value cannot be detected when the input is lower than a threshold value. Moreover, there is a problem in detecting the P-peak and T-peak values due to the derivation of an erroneous threshold value as a result of noise. We propose a robust R-peak detection algorithm with low complexity and simple computation to solve these problems. The proposed scheme removes the baseline drift in ECG signals using an adaptive filter to solve the problems involved in threshold extraction. We also propose a technique to extract the appropriate threshold value automatically using the minimum and maximum values of the filtered ECG signal. To detect the R-peak from the ECG signal, we propose a threshold neighborhood search technique. Through experiments, we confirmed the improvement of the R-peak detection accuracy of the proposed method and achieved a detection speed that is suitable for a mobile system by reducing the amount of calculation. The experimental results show that the heart rate detection accuracy and sensitivity were very high (about 100%).

Study on R-peak Detection Algorithm of Arrhythmia Patients in ECG (심전도 신호에서 부정맥 환자의 R파 검출 알고리즘 연구)

  • Ahn, Se-Jong;Lim, Chang-Joo;Kim, Yong-Gwon;Chung, Sung-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4443-4449
    • /
    • 2011
  • ECG consists of various types of electrical signal on the heart, and feature point of these signals can be detected by analyzing the arrhythmia. So far, feature points extraction method for the detection of arrhythmia done in the many studies. However, it is not suitable for portable device using real time operation due to complicated operation. In this paper, R-peak were extracted using R-R interval and QRS width informations on patients. First, noise of low frequency bands eliminated using butterworth filter, and the R-peak was extracted by R-R interval moving average and QRS width moving average. In order to verify, it was experimented to compare the R-peak of data in MIT-BIH arrhythmia database and the R-peak of suggested algorithm. As a results, it showed an excellent detection for feature point of R-peak, even during the process of operation could be efficient way to confirm.

Design of the Detection Circuitry for the Characteristics of Micromachined Vibrating Gyroscope (미세가공 진동형 자이로스코프의 특성 감지 회로의 설계에 관한 연구)

  • U, Yeong-Sin;Byeon, Gwang-Gyun;Seo, Il-Won;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.687-692
    • /
    • 1999
  • A new technique to measure low level capacitance variations of the gyroscope is proposed and verified by computer simulation. It is based on the new CV(capacitance-voltage) converter circuit biased by dc current source and the peak detector without low pass filter. The CV converter biased by dc current source provides good signal-to-noise ratio and this setup of the detection circuitry without low pass filter makes it possible to provide short settling time, that is, higher speed of measurement and wide operation range if only a few parameters are adjusted. The key parameters that affect the performance of the detection circuitry are illustrated and computer simulation results are presented. The demonstrated detection circuitry shows linear response from 10 fF to 130 fF at 10 kHz and shows good linearity.

  • PDF

Wearable Approach of ECG Monitoring System for Wireless Tele-Home Care Application

  • Kew, Hsein-Ping;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.337-340
    • /
    • 2009
  • Wireless tele-home-care application gives new possibilities for ECG (electrocardiogram) monitoring system with wearable biomedical sensors. Thus, continuously development of high convenient ECG monitoring system for high-risk cardiac patients is essential. This paper describes to monitor a person's ECG using wearable approach. A wearable belt-type ECG electrode with integrated electronics has been developed and has proven long-term robustness and monitoring of all electrical components. The measured ECG signal is transmitted via an ultra low power consumption wireless sensor node. ECG signals carry a lot clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed thus it bring errors due to motion artifacts and signal size changes. Variable threshold method is used to detect the R-peak which is more accurate and efficient. In order to evaluate the performance analysis, R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research. This concept able to allow patient to follow up critical patients from their home and early detecting rarely occurrences of cardiac arrhythmia.

  • PDF

Improvement of Spectrum Detection Algorithm for Mass Spectrometer (질량분석기를 위한 스펙트럼 검출 알고리즘의 개선)

  • Lee, Young Hawk;Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • An improved method of spectrum detection algorithm for mass spectrum analysis system is proposed. In the conventional spectrum detection algorithm that utilizes the results of the linear approximation and quadratic curve fitting on the ion signal block of each mass index, it is possible to reduce the detection error in the mass spectrum detection by further improving the condition of eliminating the invalid ion signals. Also, the proposed method can reduce the estimation error of the peak value of the mass spectrum by using the result of quadratic curve fitting for the effective ion signal block in which the peak position error is corrected. To evaluate the effectiveness of the proposed method, computer simulations were carried out step by step using the measured ion signal. Also, by comparing the rate of false detection for several inputs, the proposed method showed better detection performance than the conventional method.

Quadratic polynomial fitting algorithm for peak point detection of white light scanning interferograms (백색광주사간섭무늬의 정점검출을 위한 이차다항식맞춤 알고리즘)

  • 박민철;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.245-250
    • /
    • 1998
  • A new computational algorithm is presented for the peak point detection of white light interferograms. Assuming the visibility function of white light interferograms as a quadratic polynomial, the peak point is searched so as to minimize the error sum between the measured intensity data and the analytical intensity. As compared with other existing algorithms, this new algorithm requires less computation since the peak point is simply determined with a single step matrix multiplication. In addition, a good robustness is obtained against external random disturbances on measured intensities since the algorithm is based upon least squares principles.

  • PDF

Analysis of the range estimation error of a target in the asynchronous bistatic sonar (비동기 양상태 소나의 표적 거리 추정 오차 분석)

  • Jeong, Euicheol;Kim, Tae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • The asynchronous bistatic sonar needs to estimate direct blast arrival time at a receiver to localize targets, and therefore the direct blast arrival time estimation error could be added to target localization error in comparison with synchronous system. Direct blast especially appears as several peaks at the matched filter output by multipath, thus we compared the first peak detection technique and the maximum peak detection technique of those peaks for direct blast arrival time estimation through sea trial data. The test was performed in a shallow sea with bistatic sonar made up of spatially separated source and line array sensors. Line array sensors obtained the target signal which is generated from the echo repeater. As a result, the first peak detection technique is superior to maximum peak detection technique in direct blast arrival time estimation error. The result of this analysis will be used for further research of target tracking in the asynchronous bistatic sonar.

Automatic Noise Removal and Peak Detection Algorithm for ECG Measured from Capacitively Coupled Electrodes Included within a Cloth Mattress Pad (침대 패드 형태의 용량성 전극에서 측정된 심전도 신호를 처리하기 위한 자동 잡음 제거 및 피크 검출 알고리즘)

  • Lee, Won Kyu;Lee, Hong Ji;Yoon, Hee Nam;Chung, Gih Sung;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.87-94
    • /
    • 2014
  • Recent technological advances have increased interest in personal health monitoring. Electrocardiogram(ECG) monitoring is a basic healthcare activity and can provide decisive information regarding cardiovascular system status. In this study, we developed a capacitive ECG measurement system that can be included within a cloth mattress pad. The device permits ECG data to be obtained during sleep by using capacitive electrodes. However, it is difficult to detect R-wave peaks automatically because signals obtained from the system can include a high level of noise from various sources. Because R-peak detection is important in ECG applications, we developed an algorithm that can reduce noise and improve detection accuracy under noisy conditions. Algorithm reliability was evaluated by determining its sensitivity(Se), positive predictivity(+P), and error rate(Er) by using data from the MIT-BIH Polysomnographic Database and from our capacitive ECG system. The results showed that Se = 99.75%, +P = 99.77%, and Er = 0.47% for MIT-BIH Polysomnographic Database while Se = 96.47%, +P = 99.32%, and Er = 4.34% for our capacitive ECG system. Based on those results, we conclude that our R-peak detection method is capable of providing useful ECG information, even under noisy signal conditions.

Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Jeon, Young-Deok;Lee, Ho-Joon;Lee, Soo Jae;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • A simple and sensitive electrochemical sensor for simultaneous and quantitative detection of ranitidine (RT) and metronidazole (MT) was developed, based on a poly(thionine)-modified anodized glassy carbon electrode (PTH/GCE). The modified electrode showed the excellent electrocatalytic activity towards the reduction of both RT and MT in 0.1M phosphate buffer solution (PBS, pH 7.0). The peak-to-peak separations (${\Delta}E_p$) for the simultaneous detection of RT and MT between the two reduction waves in CV and DPV were increased significantly from ca. 100 mV at anodized GCE, to ca. 550 mV at the PTH/GCE. The reduction peak currents of RT and MT were linear over the range from 35 to $500{\mu}M$ in the presence of 200 and $150{\mu}M$ of RT and MT, respectively. The sensor showed the sensitivity of 0.58 and $0.78{\mu}A/cm^2/{\mu}M$ with the detection limits (S/N = 3) of 1.5 and $0.96{\mu}M$, respectively for RT and MT.