• Title/Summary/Keyword: Peak current limiting

Search Result 55, Processing Time 0.029 seconds

Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor (단상유도전동기의 돌입전류저감을 위한 제어기 설계)

  • Park, Su-Kang;Baek, Hyung-Lae;Lee, Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.238-245
    • /
    • 2001
  • During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

Characteristics of 15 kVA Superconducting Fault Current Limiters Using Thin Films (15 kVA급 박막형 초전도 전류제한기의 한류특성)

  • 최효상;현옥배;김혜림;황시돌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1058-1062
    • /
    • 2000
  • We investigated resistive superconducting fault current limites (SFCLs) fabricated using YBCO thin films on 2-inch diameter sapphire substrates. Nearly identical SFCL units were prepared and tested. The units were connected in series and parallel to increase the current and voltage ratings. A serial connection of the units showed significantly unbalanced power dissipation between the units. This imbalance was removed by introducing a shunt resistor to the firstly quenched unit. Parallel connection of the units increased the current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current 25 A$\_$peak/, was produced and successfully tested at a 220 V$\_$rms/circuit. From the resistance increase, we estimated that the film temperature increased to 200 K in 5 msec, and 300 K in 120 msec. Successive quenches revealed that this system is stable without degradation in the current limiting capability under such thermal shocks as quenches at 220 V$\_$rms/.

  • PDF

The Analysis of Current Limiting Characteristics Acceding to Fault Angles in the Resistive Type High-Tc Superconducting Fault Current Limiter (저항형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Lee, Jong-Hwa;Ko, Seok-Cheol;Choi, Hyo-Sang;Han, Byoung-Sung;Hyun, Ok-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.523-526
    • /
    • 2004
  • According to the continuous demand for power and the growth of electric power utilities, the electric power transmission capacity was increased. The increase of the electric power transmission capacity results in an increase of the fault current level a fault happened. So the superconducting fault current limiter(SFCL) has been reached as the countermeasure for the reduction of the fault current. In this paper, we investigate the fault currents characteristics of resistive type SFCL according to fault angles when AC power source applied. As the fault angles increase, the first peak value of fault current decreased lower. On the other hand, the power burden of SFCL increased.

  • PDF

Control of Grid-Connected Photovoltaics Inverter Using Variable Hysteresis Band Current Controller (가변 히스테리시스 전류제어기를 이용한 연계형 태양광 인버터의 제어)

  • Choi, Youn-Ok;Cho, Geum-Bae;Baek, Hyung-Lae;Kim, Si-Kyung;Yu, Gwon-Jong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.525-527
    • /
    • 1996
  • Hysteresis current control is one of the simplest techniques used to control currents for high speed drive systems, because of its simplicity of implementation, fast current control response, and inherent peak current limiting capability. However the conventional fixed-band hysteresis control has a variable switching frequency throughout the fundamental period, and consequently the load current harmonics spreaded on the wide frequency range. In this paper, a simple, novel alterative approach is proposed for a variable-hysteresis band current controller which uses feedback techniques to achieve constant switching frequency with good dynamic response. The method is easily implemented in hardware, the resultant controller is easily tuned to a particular load, and has good immunity to variation in PV parameter and dc supply voltage.

  • PDF

Study on the Charging Characteristics of a Sealed Type Ni-Cd Cell (밀폐식 Ni-Cd 전지의 충전특성에 관한 연구)

  • Yung Woo Park;Chai Won Kim;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.347-352
    • /
    • 1971
  • The variations of the positive and negative electrode potentials, and of internal pressure were measured during the charge of the sealed type Ni-Cd cell. Both polarization characteristics of a paste type Cd-electrode as a gas diffusion electrode in 30% KOH solution and the effects of active carbon electrode as an oxygen consuming auxiliary electrode of the Ni-Cd cell on the charging characteristics of the cell were studied. Peak voltage at the end of charge of the cell is ascribed to the peak at the negative electrode potential, which is due to the concentration polarization by the lack of $Cd^{++}$ ion and oxygen concentration. And the recovery of the negative electrode potential is resulted from depolarization by the increasing diffusion limiting current density with the increasing oxygen pressure. The active carbon electrode was effective as an oxygen consuming auxiliary electrode. The internal pressure of the cell could be maintained below 200mmHg even at one hour rate charge and overcharge by the use of active carbon electrode as an auxiliary electrode.

  • PDF

PWM Controller of Power Factor Correction Circuit to Improve Efficiency for Wide Load Range (넓은 부하범위에서 고효율 특성을 갖는 역율개선회로의 PWM 제어기)

  • Son, Min-soo;Kim, Hong-jung;Park, Gwi-chul;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.75-76
    • /
    • 2016
  • This paper proposes a power factor correction circuit with a high efficiency over a wide load range characteristics for a communication power supply. And the characteristic verification is applied to produce a design of prototype. Power factor correction circuit can reduce conduction losses by applying Bridgeless Boost Converter for efficiency. Over a wide load range to maintain the efficient, the control method of a PWM controller is divided by two sections according to the load area. In the low-load region, it was reduced switching losses by applying the critical conduction mode control method. On the other hand, in the heavy-load area, the hysteresis current control method is used to maintain the high efficiency over a wide load range by limiting the peak noise of the inductor.

  • PDF

Forward-Mode $Na^+-Ca^{2+}$ Exchange during Depolarization in the Rat Ventricular Myocytes with High EGTA

  • Kim, Eun-Gi;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.487-494
    • /
    • 2001
  • During depolarization, extrusion of $Ca^{2+}$ from sarcoplasmic reticulum through forward-mode $Na^+-Ca^{2+}$ exchange was studied in the rat ventricular myocytes patch-clamped in whole-cell configuration. In order to confine the $Ca^{2+}$ responses in a micro-domain by limiting the $Ca^{2+}$ diffusion time, rat ventricular myocytes were dialyzed with high (14 mM) EGTA. $K^+$ current was suppressed by substituting KCl with 105 mM CsCl and 20 mM TEA in the pipette filling solution and by omitting KCl in the external Tyrode solution. $Cl^-$ current was suppressed by adding 0.1 mM DIDS in the external Tyrode solution. During stimulation roughly mimicking action potential, the initial outward current was converted into inward current, $47{\pm}1%$ of which was suppressed by 0.1 mM $CdCl_2.$ 10 mM caffeine increased the remaining inward current after $CdCl_2$ in a cAMP-dependent manner. This caffeine-induced inward current was blocked by $1\;{\mu}M$ ryanodine, $10\;{\mu}M$ thapsigargin, 5 mM $NiCl_2,$ or by $Na^+\;and\;Ca^{2+}$ omission, but not by $0.1\;{\mu}M$ isoproterenol. The $I{\sim}V$ relationship of the caffeine-induced current elicited inward current from -45 mV to +3 mV with the peak at -25 mV. Taken together, it is concluded that, during activation of the rat ventricular myocyte, forward-mode $Na^+-Ca^{2+}$ exchange extrudes a fraction of $Ca^{2+}$ released from sarcoplasmic reticulum mainly by voltage-sensitive release mechanism in a micro-domain in the t-tubule, which is functionally separable from global $Ca^{2+}{_i}$ by EGTA.

  • PDF

Operating Properties for a Resistive SFCL of YBCO Thin Films (YBCO 박막의 저항형 초전도 한류기에 대한 동작 특성)

  • Choe, Hyo-Sang;Hyeon, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dol;Kim, Sang-Jun;Mun, Seung-Hyeon;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.537-543
    • /
    • 1999
  • We fabricated a resistive superconducting fault current limiter (SFCL) of a meander type based on a YBCO film with the meander cross section of 5 $\times$ $10^{-6}$$cm^2$, and performed current limitation experiments. The film was coated quench current was 9.6 Apeak at 60 Hz, and the fast quench time was 0.63 msec. The resistance of the limiter continuously increased for three cycles dut to the temperature rise in the gold layer. The temperature of the current limiting element reached the room temperature in 11 msec, $150^{\circ}C$ in 54 msec after quench, and was saturated afterwards. For $45^{\circ}$and $90^{\circ}$faults the fast quench times were 0.56 msec and 0.26 msec, respectively. The quench time is believed to be reduced because the fault occurred when the current was either increasing or at the peak value. This limiter effectively limited the fault current to about 1/5 of the potential current with no SFCL right after the fault and to about 1/8.5 in three cycles. We confirmed that the gold layer effectively carried out the role of heat dissipation as the SFCL was quenched.

  • PDF

Analysis Operating Characteristics of Matrix-Type Superconducting Fault Current Limiter in Ground Faults of Power Grid (전력계통의 지락사고에 대한 매트릭스형 초전도 한류기의 동작특성)

  • Oh, Kum-Gon;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Seong-Bo;Kim, Deog-Goo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.14-20
    • /
    • 2009
  • It is very important for power stability to suppress the excessive fault current happened frequently in the real power grid The superconducting fault current limiter (SFCL) is one of the most effective ways to reduce the fault current among the facilities developed so far. In this paper, we have investigated the operating characteristics of the power grid with the SFCL according to three types such as the single, double and triple line-to-ground faults. In addition, we analyzed the consumption power of the superconducting units based on the working data of the SFCL. We confirmed that the fault current could be limited lower than its peak value to 85 percentage in initial fault condition and to 85 percentage after one cycle in the matrix-type SFCL. The consumption powers of the superconducting units were almost equal by reduction of the difference of the critical current between superconducting units element.

Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions (자속구속형 초전도 전류제한기의 철심조건에 따른 특성)

  • Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Cho, Guem-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.38-45
    • /
    • 2006
  • The superconducting fault current limiters(SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the opal-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.