• Title/Summary/Keyword: Peak current control

Search Result 264, Processing Time 0.045 seconds

Measurements of Mixture Strength Using Spark Plug (스파크 플러그를 이용한 혼합기 농도 측정)

  • 조상현;임명택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • Ion current in an S.I engine cylinder is measured with the spark plug as a probe. The peak values are confirmed to show a fair correlation with local air-fuel ration and engine speed which implies that the ion current measured at the spark plug may provide a signal for the local mixture strength which is the key parameter in precise fuel control for future engines especially of gasoline direct-injected lean burn engines.

  • PDF

Comparative Performance Evaluation of Current-Mode Controls Adapted to Asymmetrical Half-Bridge Dc-to-Dc Converters (비대칭 하프 브릿지 직류-직류 컨버터에 적용된 전류 제어의 성능평가 비교)

  • Lim, Won-Seok;Choi, Byung-Cho;Park, Sung-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.257-260
    • /
    • 2005
  • Three different current-mode control schemes, peak current-mode control, charge control, and average current-mode control, are investigated for applications to asymmetrical half-bridge dc-to-dc converters. The principles, implementation, and performance of the three control schemes are compared in an attempt to identify the irrespective merits and limitations. Design examples for feedback compensations are given for the three control schemes. A 50 W experimental asymmetrical half-bridge dc-to-dc converter was used to experimentally verify the theoretical results of the paper.

  • PDF

Low price Fuel Cell Inverter System for 3[KW] Residential Power

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.61-72
    • /
    • 2007
  • This study proposed a high efficiency DC-DC converter with a new current doubler rectifier for fuel-cell systems for use with the Nexa(310-0027) PEMFC from the Ballard Co. The proposed high efficiency DC-DC converter for the fuel-cell system generated ZVS by applying partial resonance and using a phase shift PWM control method. Constantly switching frequency, loss of switching, peak current, and peak voltage were reduced by this system. In addition to this system, two inductors were attached to a rectifier circuit allowing it to be able to provide the direct current(DC) and DC voltage safely to a load with reduced ripple components. Also, by using the newly proposed current doubler rectifier, the high frequency DC-DC converter for the fuel cell system was capable of reaching a highest efficiency of 92[%] as compared to 88.3[%] efficiency in previous results, which means that efficiency increased 3.7[%]. The overall results were confirmed by a simulation and laboratory experiment.

Dynamic Analysis and Control Design of Current-Mode Controlled Asymmetrical Half-Bridge DC-To-DC Converters (전류 제어 비대칭 하프 브릿지 직류-직류 컨버터의 동특성 해석 및 제어회로 설계)

  • Lim W.S.;Choi B,C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.337-340
    • /
    • 2003
  • This paper presented practical details about control-loop design and dynamic analysis for a peak current-mode controlled asymmetrical half-bridge(ASHB) do-to-dc converter, Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of ASHB converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

An Asymmetrical Half-Bridge Dc-to-Dc Converter Employing Charge Control (전하 제어를 적용한 비대칭 하프 브리지 직류-직류 컨버터)

  • Lim, Won-Seok;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1186
    • /
    • 2003
  • In this paper, a charge controlled asymmetrical half-bridge (ASHB) dc-to-dc converter is presented. For ASHB do-to-dc converter, the peak current-mode control was found to be problematic primarily due to the oscillatory behavior of the current feedback signal. To resolve this problem, a charge control method is applied to the ASHB do-to-dc converter. A 50W prototype ASHB dc-to-dc converter was built, and successfully tested.

  • PDF

New Discrete-time Small Signal Model of Average Current Mode Control for Current Response Prediction (평균전류모드제어의 전류응답예측을 위한 새로운 이산시간 소신호 모델)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2005
  • In this paper, a new discrete-time small signal model of an average current mode control is proposed to predict the inductor current responses. Compared to the peak current mode control, the analysis of the average current mode control is difficult because of its presence of an compensation network. By utilizing sampler model, a new discrete-time small signal model is derived and used to predict the behaviors of an inductor current of average current mode control employing generalized compensation networks. In order to show the usefulness of the proposed model, prediction results of the proposed model are compared to those of the circuit level simulator, PSIM and experiment.

10 GHz LC Voltage-controlled Oscillator with Amplitude Control Circuit for Output Signal (출력 신호의 진폭 제어 회로를 가진 10 GHz LC 전압 제어 발진기)

  • Song, Changmin;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.975-981
    • /
    • 2020
  • A 10 GHz LC voltage-controlled oscillator (VCO), which controls an amplitude of output signal, is proposed to improve the phase noise. The proposed amplitude control circuit for the LC VCO consists of a peak detector, an amplifier, and a current source. The peak detector is performed detecting the lowest voltage of the output signal by using two diode-connected NMOSFET and a capacitor. The proposed 10 GHz LC VCO with an amplitude control circuit for output signal is designed using a 55 nm CMOS process with a supply voltage of 1.2 V. Its area is 0.0785 ㎟. The amplitude control circuit used in the proposed LC VCO reduces the amplitude variation 242 mV generated in the output signal of the conventional LC VCO to 47 mV. Furthermore, it improves the peak-to-peak time jitter from 8.71 ps to 931 fs.

The Digital Controller of the Single-Phas Power Factor Correction(PFC) having the Variable Gain (가변 이득을 가지는 단상 PFC 디지털 제어기)

  • 정창용
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.163-167
    • /
    • 2000
  • This paper presents the digital control of single-phase power factor correction(PFC) converter which has the variable gain according to the condition of inner control loop error. Generally the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This has a bad influence on the power factor because current loop doesn't operate smoothly in the condition that input voltage is low In particular a digital controller has more time delay than an analog controller and degrades This drops the phase margin of the total digital PFC system,. It causes the problem that the gain of current control loop isn't increased enough. In addition the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult The digital PFC controller presented in this paper has a variable gain of current control loop according to input voltage. The 1kW converter was used to verify the efficiency of the digital PFC controller.

  • PDF

Cooling System for Power Transformer Using Weighting Function (하중함수를 이용한 전력용 변압기 냉각 시스템)

  • Cho, Do-Hyeoun
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.40-45
    • /
    • 2012
  • In this paper, cooling system of power transformers is proposed for temperature optimized control. We predict the peak temperature of power transformer coils using load factors and construct a cooling system using weighting function. For the optimized temperature control for power transformer, a correlation function based on the load factor of a load current and the each temperatures for winding coils, for air and for oil is presented to predict the winding-coil peak temperature. Also, the results controlled by applying the power transformer is presented.

Unity Power Factor Control for A Single Phase AC/DC PWM Converter (단상 AC/DC PWM 변환기의 단위 역률 제어)

  • Kang, Dong-Woo;Cha, Young-Kil;Lee, Deuk-Kee;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.373-377
    • /
    • 1996
  • Recently, active power factor control for AC/DC converter has been required to replace for a conventional diode rectifier. A voltage type AC/DC converter is widely used to obtain higher regulated DC voltage than input voltage with a unity power factor and a sinusoidal line current. This paper describes several active power factor control method for AC/DC converter. The analysis of several active power factor control is given. The simulations for hysteresis control, peak current control. constant frequency control and average current mode control are represented and compared.

  • PDF