• Title/Summary/Keyword: Peak Response Estimation(Peak ResponseEstimation)

Search Result 71, Processing Time 0.034 seconds

Probabilistic distribution of displacement response of frictionally damped structures excited by seismic loads

  • Lee, S.H.;Youn, K.J.;Min, K.W.;Park, J.H.
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.363-372
    • /
    • 2010
  • Accurate peak response estimation of a seismically excited structure with frictional damping system (FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated the peak response of the structure with FDS by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In case that earthquake excitation is defined probabilistically, corresponding response of the structure with FDS becomes to have probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake excitation generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Coefficients of the proposed PDF are obtained by regression of the statistical distribution of the time history responses. Finally, the correlation between the resulting PDFs and statistical response distribution is investigated.

Design of Flight Envelope Protection System on Velocity of Aircraft (항공기의 수평속도에 대한 비행영역 보호 시스템 설계)

  • Shin, Ho-Hyun;Lee, Sang-Hyun;Kim, You-Dan;Kim, Eung-Tae;Seong, Ki-Jung;Choi, Hyoung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • Recently developed aircrafts use Fly-By-Wire(FBW) or Fly-By-Light(FBL) system. These systems have some merits; they can perform very complicated missions, they can expand the flight region and improve the reliability of the aircrafts. With the development of flight control systems that use FBW technique, flight envelope protection concept is introduced to guarantee reliability of the aircraft and improve the efficiency of mission achievement. In this study, flight envelope protection system is designed using a dynamic trim algorithm, a peak response estimation, and a gain scheduling technique. The performance of these methods are compared by performing numerical simulation.

Probabilistic Distribution of Displacement Response of Frictionally Damped Structures under Earthquake Loads (지진하중을 받는 마찰형 감쇠를 갖는 구조물의 변위 응답 확률 분포)

  • Lee, Sang-Hyun;Park, Ji-Hun;Youn, Kyung-Jo;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.639-644
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that on earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF is obtained by regression analysis of the statistical distribution of the time history responses. Finally, the correlation between PDFs and statistical response distribution is presented.

  • PDF

Probabilistic analysis of peak response to nonstationary seismic excitations

  • Wang, S.S.;Hong, H.P.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.527-542
    • /
    • 2005
  • The main objective of this study is to examine the accuracy of the complete quadratic combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra (UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar or the exponential modulating functions were used to define the evolutionary power spectral density functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the peak responses calculated by using the CQC rule with the modal responses given by the UHS. The comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation coefficient and the peak modal responses from the UHS could lead to significant under- or over-estimation when contributions from each of the modes are similarly significant.

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

  • Waris, Muhammad Bilal;Ishihara, Takeshi
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.247-268
    • /
    • 2012
  • A finite element model is developed for dynamic response prediction of floating offshore wind turbine systems considering coupling of wind turbine, floater and mooring system. The model employs Morison's equation with Srinivasan's model for hydrodynamic force and a non-hydrostatic model for restoring force. It is observed that for estimation of restoring force of a small floater, simple hydrostatic model underestimates the heave response after the resonance peak, while non-hydrostatic model shows good agreement with experiment. The developed model is used to discuss influence of heave plates and modeling of mooring system on floater response. Heave plates are found to influence heave response by shifting the resonance peak to longer period, while response after resonance is unaffected. The applicability of simplified linear modeling of mooring system is investigated using nonlinear model for Catenary and Tension Legged mooring. The linear model is found to provide good agreement with nonlinear model for Tension Leg mooring while it overestimates the surge response for Catenary mooring system. Floater response characteristics under different wave directions for the two types of mooring system are similar in all six modes but heave, pitch and roll amplitudes is negligible in tension leg due to high restraint. The reduced amplitude shall lead to reduction in wind turbine loads.

Estimation of amplification of slope via 1-D site response analysis (1차원 지반응답해석을 통한 사면의 증폭특성 규명)

  • Yun, Se-Ung;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

Probability Distribution of Displacement Response of Structures with Friction dampers Excited by Earthquake Loads Generated Using Kanai-Tajimi Filter (Kanai-Tajimi 필터 인공지진 가진된 마찰형 감쇠를 갖는 구조물의 변위 응답 확률분포)

  • Youn, Kyung-Jo;Park, Ji-Hun;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-628
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that an earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF are obtained by regression analysis of the statistical distribution of the time history responses. Finally the correlation between PDFs and statistical response distribution is presented.

Analysis of Behavioral Properties for Hydrologic Response Function according to the Interaction between Stream Network and Hillslope (하천망과 구릉지사면 사이의 상호작용에 따른 수문학적 응답함수의 거동특성 분석)

  • Yoon, Yeo Jin;Kim, Joo Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.

Stochastic procedures for extreme wave induced responses in flexible ships

  • Jensen, Jorgen Juncher;Andersen, Ingrid Marie Vincent;Seng, Sopheak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1148-1159
    • /
    • 2014
  • Different procedures for estimation of the extreme global wave hydroelastic responses in ships are discussed. Firstly, stochastic procedures for application in detailed numerical studies (CFD) are outlined. The use of the First Order Reliability Method (FORM) to generate critical wave episodes of short duration, less than 1 minute, with prescribed probability content is discussed for use in extreme response predictions including hydroelastic behaviour and slamming load events. The possibility of combining FORM results with Monte Carlo simulations is discussed for faster but still very accurate estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects.

Estimation of single-trial event-related potentials using multirate signal processing latency compensation (멀티레이트 신호처리와 동적 래이턴스 보정에 의한 단일 응답 유발전위 뇌파 추출)

  • 이용희;이두수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.60-69
    • /
    • 1997
  • We present an average method based on the multirate signal processing and dynamic allocation average for the purpose of monitoring event-related potentials(ERP) and continuously and dynamically. In the proposed method, first, latency shifts are detected through the cross correlation between a current response and the reference response. Then, the multirate signal processing which is composed of up-sampler, lowpass filter, and down sampler is performed to compensate the latency shifts of the reference response, therefore we obtain the reference response with a peak latencies compenated by those of a current response. Finally, the single response is obtained by averaging the compensated reference response and a current response. In the simulation, the results of quantitative evaluation by simulation and the results using linical data are presented. From the result, the proposed method reflects dynamic time-varying ERP more exactly than previous methods and is also effective in consecutive monitoring of ERP.

  • PDF