• 제목/요약/키워드: Peak Load Prediction

검색결과 64건 처리시간 0.773초

TCN 딥러닝 모델을 이용한 최대전력 예측에 관한 연구 (A Study on Peak Load Prediction Using TCN Deep Learning Model)

  • 이정일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권6호
    • /
    • pp.251-258
    • /
    • 2023
  • 안정적으로 전력을 공급하고 전력계통을 운영하기 위해서는 최대전력을 정확히 예측해야 한다. 특히, 최대전력이 높게 발생하는 겨울과 여름에는 그 중요성이 매우 커진다. 최대전력을 실제 수요보다 높게 예측하면 발전소 기동 비용이 증가하여 경제적 손실이 발생하고, 최대전력을 실제 수요보다 낮게 예측하면 기동이 가능한 발전소가 부족하여 정전이 발생할 수 있다. 최대전력의 예측 오차를 최소화함으로써 경제적 손실과 정전을 예방할 수 있다. 본 논문에서는 최대전력 예측의 오차를 최소화하기 위하여 최신 딥러닝 모델인 TCN을 이용한다. 딥러닝 모델은 하이퍼 파라미터를 어떻게 설정하느냐에 따라 성능 차이가 발생하므로, TCN의 하이퍼 파라미터를 최적화하는 방법을 제안한다. 2006년부터 2021년까지의 데이터를 입력하여 모델을 훈련하고, 2022년의 데이터를 이용하여 예측 오차를 실험하였다. 실험을 수행한 결과 본 논문에서 제안한 최적화 방법을 이용한 TCN 모델의 성능이 다른 딥러닝 모델보다 성능이 우수한 것을 확인하였다.

신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측 (Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System)

  • 방영근;김재현;이철희
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

Daily Electric Load Forecasting Based on RBF Neural Network Models

  • Hwang, Heesoo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.39-49
    • /
    • 2013
  • This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of the current prediction and the change in the errors between the current and the previous prediction. The optimal weights (called "gains" in the error correction) are identified by differential evolution. The peak load forecasted by the RBF network models is also corrected by combining the load curve outputs of the RBF models by linear addition with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute percent error (MAPE) and the sum of errors are also identified using differential evolution. The proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE for daily peak load and 1.128% MAPE for daily load curve.

전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법 (Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff)

  • 박명우;강모세;윤용운;홍선리;배국열;백종복
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.388-398
    • /
    • 2021
  • 본 논문에서는 전기요금 절감용 ESS를 활용한 Particle swarm optimization(PSO) 기반 Peak shaving 제어 방법을 제안한다. 제안한 방식은 실제 부하와 예상되는 부하의 소비를 비교하여 피크 절감을 위해 ESS의 추가 유효전력값을 계산하여 입력을 더한다. 또한 추가로 증가시킨 유효전력을 보상하기 위해, 유효전력을 할당하는 과정을 수행하며 유효전력 할당치가 피크 부하에 영향을 주지 않도록 유효전력 할당 지점에 예상되는 부하의 평균을 최소화하는 최적화 해를 PSO를 통해 찾는다. 제안한 방식의 성능 검증을 위해 실제 부하 데이터와 예측 알고리즘을 반영하여 예측 오차가 적은 경우와 큰 경우의 사례 연구를 수행하였다. 사례 연구 수행 결과 제안한 방식을 전기요금 절감을 위한 충·방전 제어 방식과 같이 수행한 경우 예측 오차가 큰 경우에도 성공적으로 피크 부하 절감을 수행하였으며, 17.8%의 피크 부하 절감 효과와 6.02%의 전기요금 절감 효과를 보였다.

동력용 배전 변압기의 최대부하 예측 개선 방안에 관한 연구 (A Study on the Peak Load Prediction for Molter-use Distribution Transformer)

  • 박경호;김재철;윤상윤;이영석;박창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.530-532
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers. The peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF

주상 변압기 최대부하 추정을 위한 부하상관계수 및 수용율 조정 (Adjustment of Load Regression Coefficients and Demand-Factor for the Peak Load Estimation of Pole-Type Transformers)

  • 윤상윤;김재철;박경호;문종필;이진;박창호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권2호
    • /
    • pp.87-96
    • /
    • 2004
  • This paper summarizes the research results of the load management for pole transformers done in 1997-1998 and 2000-2002. The purpose of the research is to enhance the accuracy of peak load estimation in pole transformers. We concentrated our effort on the acquisition of massive actual load data for modifying the load regression coefficients, which related to the peak load estimation of lamp-use customers, and adjusting the demand-factor coefficients, which used for the peak load prediction of motor-use customers. To enhance the load regression equations, the 264 load data acquisition devices are equipped to the sample pole transformers. For the modification of demand factor coefficients, the peak load currents are measured in each customer and pole transformer for 13 KEPCO (Korea Electric Power Corporation) distribution branch offices. Case studies for 50 sample pole transformers show that the proposed coefficients could reduce estimating error of the peak load for pole transformers, compared with the conventional one.

호당 수용률 조정을 통한 동력용 배전 변압기 최대부하 예측 개선 방안 (Improvement Method of Peak Load Forecasting for Mortor-use Distribution Transformer by Readjustment of Demand Factor)

  • 박경호;김재철;이희태;윤상윤;박창호;이영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.41-43
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers in winter, spring summer. And, the peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

특수일의 최대 전력수요예측 알고리즘 개선 (An Improved Algorithm of the Daily Peak Load Forecasting fair the Holidays)

  • 송경빈;구본석;백영식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권3호
    • /
    • pp.109-117
    • /
    • 2002
  • High accuracy of the load forecasting for power systems improves the security of the power system and generation cost. However, the forecasting problem is difficult to handle due to the nonlinear and the random-like behavior of system loads as well as weather conditions and variation of economical environments. So far. many studies on the problem have been made to improve the prediction accuracy using deterministic, stochastic, knowledge based and artificial neural net(ANN) method. In the conventional load forecasting method, the load forecasting maximum error occurred for the holidays on Saturday and Monday. In order to reduce the load forecasting error of the daily peak load for the holidays on Saturday and Monday, fuzzy concept and linear regression theory have been adopted into the load forecasting problem. The proposed algorithm shows its good accuracy that the average percentage errors are 2.11% in 1996 and 2.84% in 1997.