• Title/Summary/Keyword: Pd-based Catalyst

Search Result 49, Processing Time 0.027 seconds

A Study on the Reaction Characteristics of the HCHO Oxidation Using Nobel Metal Catalysts at Room Temperature (귀금속계 촉매를 이용한 HCHO 상온 산화 반응특성 연구)

  • Kim, Geo Jong;Seo, Phil Won;Kang, Youn Suk;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 2014
  • In this study, we investigated the noble metal catalysts for HCHO removal at room temperature. These catalysts were characterized by XRD, FT-IR, CO-chemisorption. As a result, Pt and Pd based catalysts prepared by the reduction treatment showed the superior HCHO oxidation ability at room temperature. When the catalysts were prepared using $TiO_2$ support, which is well known as the reducing support, showed the superior activity. Also, the activity decreased by the agglomeration of active metal with increasing the reduction time. In case of reduction catalysts, it has been confirmed that the desorption and adsorption ability properties of HCHO is excellent at room temperature.

Optimization of Catalytic Reaction for Synthesis of 2-Methyl-4-methoxydiphenylamine (2-Methyl-4-methoxydiphenylamine 합성을 위한 촉매반응의 최적화)

  • Cho, Jeong-Woo;Kim, Eun-Seok;Kim, Kiseok;Kim, Seong-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.293-298
    • /
    • 1999
  • Reaction mechanism was elucidated and reaction condition were optimized for the catalytic reaction synthesizing 2-methyl-4-methoxy-diphenylamine (MMDPA) which is an intermediate of Fluoran heat-sensitive dyestuff. Reactants consisted of 2-methyl-4-methoxyaniline (MMA), 3-methyl-4-nitroanisole (MNA), and cyclohexanone, and 5 wt % Pd/C was used as a catalyst. Experiments were run in an open slurry reactor equipped with reflux condenser, and products were analyzed by means of GC/MS and NMR. MMDPA yield of 90 mole % could be obtained after reaction time of 8~10 hours under the optimal reaction conditions comprising the reaction mass composition of MMA : MNA : cyclohexanone = 1 : 2 : 150 based on MMA input of 0.01 gmoles in xylene solvent, reaction temperature of $160^{\circ}C$, and catalyst amount of 0.5 g. It was found that the rate-determining step of overall reaction was dehydrogenation of the intermediate product obtained from condensation of MMA and cyclohexanone. Overall reaction rate and MMDPA yield were enhanced owing to hydrogen transfer reaction by introducing MNA together with MMA in the reaction mass. Excess cyclohexanone in the reaction mass played an important role of promoting the condensation of MMA and cyclohexanone.

  • PDF

A Numerical Study on the Propane Combustion Characteristics in a Catalytic Combustor (프로판의 촉매연소 특성에 관한 수치적 연구)

  • Lee, Youn-Hwa;Kim, Chong-Min;Kim, Man-Young;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.247-250
    • /
    • 2009
  • The catalytic combustor has the advantage of stable combustion under very lean conditions with low emissions of $NO_x$, CO and unburned hydrocarbon(UHC). Notwithstanding these advantages, the commercial application of the catalytic combustion has been delayed due to the complicated reaction process. For the stable operation of catalytic combustor, study on the combustion characteristics of the catalytic combustor is needed. So, in this study, numerical study on the propane combustion characteristics of the catalytic combustor with Pd-based catalyst is performed.

  • PDF

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

A Parametric Study on the Catalytic Combustion of Gaseous Methane, Ethane and Propane Fuels (메탄, 에탄 및 프로판 가스 연료의 촉매연소에 관한 매개변수 연구)

  • Jung, Min-Seung;Kim, Chong-Min;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.309-315
    • /
    • 2012
  • Catalytic combustion is generally accepted as one of the environmentally preferred alternatives for heat and power from fossil fuels, as it has the advantage of stable combustion under very lean conditions with such low emissions as UHC, CO, and NOx. In this work, therefore, comparative numerical studies on the catalytic combustion behaviors over Pd-based catalysts have been conducted with the gaseous $CH_4$, $C_2H_6$, and $C_3H_8$. In the following, after introducing the governing equations with 1D channel and Langmuir-Hinshelwood models, numerical investigations on the catalyst performance are conducted by changing such various parameters as inlet temperature, excess air ratio, and space velocity. The numerical results show that outlet temperature and conversion of $C_3H_8$ are highest among others because of its chemical structure and reactivity.

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.

Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal (무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가)

  • Yoon, Hee-Seung;Oh, Jong Hyun;Lee, Hyung Keun;Jeon, Jong-Ki;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.863-867
    • /
    • 2008
  • Pitch based activated carbon fiber(ACF) was prepared from reformed naphtha cracking bottom oil(NCB oil) by melt spinning. The fibers obtained were stabilized, carbonized, and then steam activated. The ACF was sensitized with Pd-Sn catalytic nuclei via a single-step activation approach. This sensitized ACF was used as precursors for obtaining copper plated ACFs via electroless plating. ACFs uniformly decorated with metal particles were obtained with reduced copper plating in the reaction solution. Effects of the amount of copper on characteristics of ACF/Cu catalysts were investigated through BET surface area, X-ray diffraction, scanning emission microscopy, and ICP. The amount of copper increased with plating time, but the surface area as well as the pore volume decreased. NO conversion increased with reaction temperature. NO conversion decreased with increasing the amount of copper, which is seemed to be due to the reduction of surface area as well as the dispersion of copper.

CNT-Ni-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices (차세대 웨어러블 디바이스를 위한 높은 기계적/전기적 특성을 갖는 CNT-Ni-Fabric 유연기판)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.39-44
    • /
    • 2020
  • Recently, numerous researches are being conducted in flexible substrate to apply to wearable devices. Particularly, Conductive substrate researches that can implement the wearable devices on clothing are massive. In this study, we formed fiber substrate spraying CNT and Pd mixed solution on it and plated metal layer with electroless plating. Used SEM equipment and EDS analysis to analysis structure of the plated fiber substrate and discovered Ni layer was created. For check electrical properties, mapping was performed to check surface resistance and distribution of resistance of electroless plated fiber substrate with 4-point probe. It was confirmed that conductivity was improved as the duration of electroless plating was increased, and it was found that distribution of resistance by surface location was uniform. Changes in resistance due to mechanical stress were measured through tensile, bending, and twisting tests. As a result, it was confirmed that resistance change of flexible substrate gradually disappeared as plating time increased. Using UTM (Universal testing machine), it was analyzed mechanical properties of the electroless plated substrate with respect to changes in plating time were improved. In the case of conductive fiber substrate in which electroless plating was performed for 2 hours, tensile strength was increased by 16 MPa than fiber substrate. Based on these results, we found that Ni-CNT-Fabric flexible substrate is adequate for clothing-intergrated conductive substrate and we positively expect that this experiment shows flexible substrate can adapt to and develop not only a wearable device technology but also other fields needing flexibility such as battery, catalyst and solar cell.