• Title/Summary/Keyword: Pd catalysts

Search Result 187, Processing Time 0.026 seconds

Hydrogenolysis of CFC-113a$(CF_3CCl_3)$ Catalyzed by Heterogeneous Catalysts in the Liquid Phase (불균일 촉매를 이용한 CFC-113a$(CF_3CCl_3)$의 액상 가수소 분해 반응)

  • Jo, Uk Jae;Lee, Ik Mo;Kim, Hong Gon;Kim, Hun Sik
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.695-700
    • /
    • 1994
  • Hydrogenolysis reactions of CFC-113a catalyzed by various heterogeneous catalysts $(Rh/Al_2O_3,\;Pd/C,\;Ni,\;Al_2O_3,\;Active\;carbon)$ were investigated in the liquid and gas phases. In the liquid phase reaction, different catalysts showed different activities, but all catalysts used gave high selectivities toward HCFC-123 over 95%. It was noticeable that the neutral $Al_2O_3$ showed both a high activity and a selectivity in the liquid phase reaction. In the gas phase reaction, transition metals on carbon(Pd/C, Pt/C) were so active for hydrogenolysis of CFC-113a that they even catalyzed the production reaction of overhydrogenated compounds such as $HCFC-133a(CF_3CH_2Cl)\;and\;HFC-143a(CF_3CH_3)$. $Al_2O_3$, which showed the high activity in the liquid phase reaction, did not show a remarkable activity. When $Al_2O_3$ was used in the liquid phase reaction, the hydrogenolysis of CFC-113a proceeded without any side products in THF. However, the same reaction in MeOH produced side products, such as $CH_3OCH_3\;and\;CH_3CH_2OCH_3$ from solvent. Based on this result, including heterogeneous catalysts, it was concluded that the solvent played an important role in the liquid phase reaction.

  • PDF

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Application of carbon-supported PdPt as anode catalysts in PEM fuel cell (PdPt/C 촉매의 고분자전해질 연료전지의 산화극 촉매 적용)

  • Cho, Yong-Hun;Choi, Baeck-Beom;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.396-398
    • /
    • 2006
  • PdPt/C (Pd:Pt atomic ratio of around 19:1 60wt, %) 촉매를 고분자전해질 연료전지용 전극 촉매소재의 적용하였다. PdPt/C 촉매를 산화극 촉매로, 환원극 촉매로는 Pt/C 촉매를 사용하고 반대로 산화극 촉매는 Pt/C 촉매, 환원극 촉매로는 PdPt/C 촉매를 사용했을 때, PdPt/C 촉매를 산화극과 환원극 촉매로 동시에 사용했을 때의 고분자전해질 연료전지의 단위전지 성능을 각각 비교하였다. PdPt/C촉매를 산화극에만 적용했을 때에 Pt/C 상용촉매를 산화극과 환원극에 모두 적용했을 때의 성능만큼 좋은 성능을 확인할 수 있었다. 환원극 촉매는 Pt/C를 사용하고 산화극 촉매를 PdPt/C Pt/C Pd/C를 사용하였을 매의 성능을 비교하였다. Pd/C를 산화극 촉매로 사용한 단위전지가 나머지 두 경우의 성능에 비하여 현저히 떨어짐을 확인할 수 있었다. 이는 극소량의 Pt 량을 포함한 PdPt/C 촉매가 고분자전해질 연료전지의 산화극 Pt/C 촉매의 대체촉매로 사용 가능함을 보여준다.

  • PDF

Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

  • Lee, Minjae;Kim, Bo-Hyun;Lee, Yuna;Kim, Beom-Tae;Park, Joon B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1979-1984
    • /
    • 2014
  • We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in $H_2$ and $O_2$ gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

Removal Characteristics of Phenol at Advanced Oxidation Process with Ozone/Activated Carbon Impregnated Metals (오존/촉매 산화공정에서 금속담지 활성탄을 이용한 페놀의 분해 특성)

  • Choi, Jae Won;Yoon, Ji Young;Park, Jin Do;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2012
  • Advanced oxidation processes (AOP) such as O3/activated carbon process and O3/catalysts process were used to compare the decomposition of phenol. Catalysts such as Pd/activated carbon (Pd/AC), Mn/activated carbon (Mn/AC), Co/activated carbon (Co/AC) and Fe/activated carbon (Fe/AC) were prepared by impregnation of Pd, Mn, Co and Fe into the activated carbon of pellet form, respectively. Based on an hour of reactions, the following descending order for the decomposition ratios of dissolved O3 to the 1.48 mg/L of saturated dissolved O3 was observed: Mn/AC (45%) > Pd/AC (42%) > Co/AC (33%) > AC (31%) > Fe/AC (27%). The removal efficiencies of phenol were also arranged in the descending order of AOP as follows: Mn/AC (89%) > Pd/AC (85%) > Co/AC (77%) > AC (76%) > Fe/AC (71%). The remaining ratios (C/Co) of TOC (total organic carbon) after an hour of experiments were arranged in the ascending order of AOP as follows : Pd/AC (0.29) < Mn/AC (0.36) < AC (0.40) < Co/AC (0.49) < Fe/AC (0.51). However, the catalytic effects in the Co/AC and the Fe/AC processes were little in comparison with O3/AC process. The maximum concentrations of intermediates such as hydroquinone and catechol formed from the decomposition of phenol were arranged in the ascending order of AOP as follows: Pd/AC < Fe/AC < Co/AC < AC < Mn/AC. In the case of Pd/AC process, these intermediates were almost disappeared after an one hour of reaction.

Recovery of Precious Metals from Spent Catalyst Generated in Domestic Petrochemical Industry (한내 석유화학 폐촉매로부터 귀금속의 회수 연구)

  • 김준수;박형규;이후인;김성돈;김철주
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Recovery of precious metal values from petrochemical spent catalyst is important from the viewpoint of environmental protection and resource recycling. Two types of spent catalysts were used in this study. One used in the manufacture of ethylene contains 0.3% Pd in the alumina substrate. The other used in oil refining contains 0.3% Pt and 0.3% Re. Both spent catalysts are roasted to remove volatile matters as carbon and sulfur. Then, metallic Pd powder from Pd spent catalyst is obtained in the course of grinding, hydrochloric acid or aqua regia leaching and cementation with iron. For the recovery of Pt and Re from Pt-Re spent catalyst, Pt and Re are leached with either HCI or aqua regia, first. Metallic Pt powder is recovered from the leach solution by cementation with Fe powder. Re in sulfide form is precipitated by the addition of sodium sulfide to the solution obtained after Pt recovery. It is found that 6N HCI can be successfully used as leaching agent for both types of spent catalyst. 6N HCI is considered to be better than aqua regia in consideration of reagent and equipment cost.

  • PDF

Catalytic deoxygenation of vanillin over layered double hydroxide supported Pd catalyst

  • Liao, Chanjuan;Liu, Xixi;Ren, Yongshen;Gong, Daoxin;Zhang, Zehui
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.380-386
    • /
    • 2018
  • A sustainable method was developed for the upgrade of biomass derived vanillin (a typical model compound of lignin) into the potential liquid biofuels over a layered double hydroxide supported Pd catalyst (abbreviated as CoAl-LDH/Pd). The CoAl-LDH/Pd catalyst showed high catalytic activity towards the hydrodeoxygenation of vanillin into 2-methoxy-4-methylphenol (MMP) under mild conditions in aqueous media. High MMP yield up to 86% was produced at $120^{\circ}C$ after 4 h. Kinetic studies revealed that the rate-determining step for the hydrodeoxygenation of vanillin was the hydrogenolysis of vanillyl alcohol. More importantly, the CoAl-LDH/Pd catalyst was highly stable without the loss of activity.

Preparation of Graphene Based PdOx and CuOx/MnOx Nanocomposites and Their Catalytic Applications in C-C Coupling and CH3SH Decomposition Reactions

  • Lee, Gyeong-Hun;Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.175.2-175.2
    • /
    • 2014
  • Graphene (G) has been modified with palladium, copper, and manganese oxide nanoparticles (NPs), and their catalytic applications have been studied in C-C coupling reactions and methylmercaptan (CH3SH) decomposition reactions. In this research, graphite oxide (GO) sheets were exfoliated and oxidized from graphite powder and impregnated with metal precursors including Pd2+, Cu2+, and Mn2+. The thermal treatments of the metal impregnated GO in preferred gas environments produced Pd NPs on graphene (Pd/G), PdO NPs on GO (PdO/GO), and CuOx and MnOx NPs on graphene (CuOx/MnOx/G). In case of Pd/G and PdO/GO, the TEM images show that, although the mean size of the Pd NPs changed significantly before and after the C-C coupling reaction, that of the PdO NPs didn't, implying that the PdO/GO was superior to Pd/G in terms of the recyclability. Also, we demonstrate that the CuOx/MnOx/G exerts the excellent catalytic efficiency in CH3SH decomposition reaction comparing with conventional catalysts. The chemical and electronic structural changes were investigated using XRD and XPS.

  • PDF

Preparation of Pd Coated Hollow Fiber-Type La0.1Sr0.9Co0.2Fe0.8O3-δ Catalyst and Study on Removal Characteristics of Minute Oxygen (Pd 코팅 된 중공사형 La0.1Sr0.9Co0.2Fe0.8O3-δ 촉매의 제조 및 미량 산소 제거 특성 연구)

  • Jeong, Byeong Jun;Lee, Hong Ju;Kim, Min Kwang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.774-780
    • /
    • 2019
  • An efficient Pd-coated $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF-1928) catalyst for total oxidation of methane under landfill gas at low tmeperature has been developed. Synergism was observed between Pd coating and LSCF-1928 substrate. When Pd coating on LSCF-1928, we used electroless plating method and conformed characteristic of catalyst through TPR(Temperature Programmed Reduction) analysis, XRD(X-ray Diffraction) analysis, SEM(Scanning Electron Microscope). The results demonstrated that the Pd coated LSCF-1928 catalysts showed higher performance than non-Pd LSCF-1928. Pd coated LSCF-1928 had low total oxidation temperature of methane (< $475^{\circ}C$) which is lower than total oxidation temperature of methane about non-Pd LSCF-1928 catalysts (= $475^{\circ}C$). Also, $O_2$ conversion rate was higher than non-Pd LSCF-1928 at same temperature.