Removal Characteristics of Phenol at Advanced Oxidation Process with Ozone/Activated Carbon Impregnated Metals

오존/촉매 산화공정에서 금속담지 활성탄을 이용한 페놀의 분해 특성

  • Choi, Jae Won (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Yoon, Ji Young (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Park, Jin Do (Department of Chemistry & Environmental, Ulsan College) ;
  • Lee, Hak Sung (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • 최재원 (울산대학교 생명화학공학부) ;
  • 윤지영 (울산대학교 생명화학공학부) ;
  • 박진도 (울산과학대학 환경화학공업과) ;
  • 이학성 (울산대학교 생명화학공학부)
  • Published : 2012.06.10

Abstract

Advanced oxidation processes (AOP) such as O3/activated carbon process and O3/catalysts process were used to compare the decomposition of phenol. Catalysts such as Pd/activated carbon (Pd/AC), Mn/activated carbon (Mn/AC), Co/activated carbon (Co/AC) and Fe/activated carbon (Fe/AC) were prepared by impregnation of Pd, Mn, Co and Fe into the activated carbon of pellet form, respectively. Based on an hour of reactions, the following descending order for the decomposition ratios of dissolved O3 to the 1.48 mg/L of saturated dissolved O3 was observed: Mn/AC (45%) > Pd/AC (42%) > Co/AC (33%) > AC (31%) > Fe/AC (27%). The removal efficiencies of phenol were also arranged in the descending order of AOP as follows: Mn/AC (89%) > Pd/AC (85%) > Co/AC (77%) > AC (76%) > Fe/AC (71%). The remaining ratios (C/Co) of TOC (total organic carbon) after an hour of experiments were arranged in the ascending order of AOP as follows : Pd/AC (0.29) < Mn/AC (0.36) < AC (0.40) < Co/AC (0.49) < Fe/AC (0.51). However, the catalytic effects in the Co/AC and the Fe/AC processes were little in comparison with O3/AC process. The maximum concentrations of intermediates such as hydroquinone and catechol formed from the decomposition of phenol were arranged in the ascending order of AOP as follows: Pd/AC < Fe/AC < Co/AC < AC < Mn/AC. In the case of Pd/AC process, these intermediates were almost disappeared after an one hour of reaction.

오존/활성탄 공정 및 오존/촉매 공정과 같은 고급산화공정을 사용하여 페놀의 분해를 비교하였다. 촉매는 조립 활성탄에 팔라듐(Pd/AC), 망간(Mn/AC), 코발트(Co/AC) 및 철(Fe/AC)을 담지하여 제조하였다. 1 h 동안의 반응결과, 포화 오존농도(1.48 mg/L)에서 용존 오존의 분해율은 Mn/AC (45%) > Pd/AC (42%) > Co/AC (33%) > AC (31%) > Fe/AC (27%)의 순서로 감소하였으며, 페놀의 제거효율은 Mn/AC (89%) > Pd/AC (85%) > Co/AC (77%) > AC (76%) > Fe/AC (71%)의 순서로 감소하였다. 총유기탄소(TOC)의 잔존 비율(C/Co)은 Pd/AC (0.29) < Mn/AC (0.36) < AC (0.40) < Co/AC (0.49) < Fe/AC (0.51)의 순서로 증가하였다. Co/AC 및 Fe/AC 공정은 오존/활성탄 공정과 비교하여 촉매효과가 거의 없었다. 또한 페놀이 분해되면서 생성되는 중간물질인 하이드로퀴논과 카테콜의 최대 농도는 Mn/AC > AC > Co/AC > Fe/AC > Pd/AC 공정의 순서로 감소하였으며, Pd/AC 공정의 경우, 1 h 동안 반응 후, 이러한 중간물질들이 검출되지 않았다.

Keywords

References

  1. K. H. Lee, D. Y. Jang, and T. J. Park, Appl. Chem. Eng., 5, 51 (1996).
  2. J. D. Park and H. S. Lee, Appl. Chem. Eng., 20, 87 (2009).
  3. J. D. Park, J. H. Seo, and H. S. Lee, J. Environ. Health Sci., 31, 404 (2005).
  4. J. S. Kim and J. H. Choi, Appl. Chem. Eng., 3, 129 (1999).
  5. J. S. Kim, S. D. Song, and J. H. Choi, Appl. Chem. Eng., 4, 193 (2000).
  6. J. Hoigne and H. Bader, Ozone Sci. Eng., 1, 73 (1979). https://doi.org/10.1080/01919517908550834
  7. H. Bader and J. Hoigne, Water Res., 15, 449 (1981). https://doi.org/10.1016/0043-1354(81)90054-3
  8. H. Taube and W. C. Bray, J. Am. Chem. Soc., 62, 3357 (1940). https://doi.org/10.1021/ja01869a027
  9. R. Gracia, J. L. Aragues, and J. L. Ovelleiro, Ozone Sci. Eng., 18, 195 (1996). https://doi.org/10.1080/01919519608547326
  10. C. G. Hewes and R. R. Davinnson, Water AIChE Symp. Seri., 69, 71 (1972).
  11. Y. Y. Chang, B. K. Kim, S. C. Hong, E. O. Seo, and J. K. Yang, J. Kor. Soc. Environ. Eng., 29, 1207 (2007).
  12. K. S. Yoon, T. H. Kwon, Y. S. Park, K. H. Cho, and H. H. Kim, Appl. Chem. Eng., 8, 661 (2004).
  13. H. Bader and J. Hoigne, Water Res., 15, 449 (1981). https://doi.org/10.1016/0043-1354(81)90054-3
  14. B. Legube and N. K. V. Leitner, Catal. Today, 53, 61 (1999). https://doi.org/10.1016/S0920-5861(99)00103-0
  15. J. Hoigne and H. Bader, Water Res., 17, 173 (1983). https://doi.org/10.1016/0043-1354(83)90098-2
  16. J. Staehelln and J. Hoigne, Environ. Sci. Technol., 19, 1206 (1985). https://doi.org/10.1021/es00142a012
  17. C. G. Hewes and R. P. Davison, AIChE J., 17, 141 (1971) https://doi.org/10.1002/aic.690170129
  18. U. Jans and J. Hoigne, Ozone Sci. Eng., 20, 67 (1998). https://doi.org/10.1080/01919519808547291