• Title/Summary/Keyword: Pd alloy membrane

Search Result 34, Processing Time 0.021 seconds

The Effect of Cu Reflow on the Pd-Cu Alloy Membrane Formation for Hydrogen Separation (수소분리용 Pd-Cu 합금 분리막의 Cu Reflow 영향)

  • Mun, Jin-Uk;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.6
    • /
    • pp.255-262
    • /
    • 2006
  • Pd-Cu alloy membrane for hydrogen separation was fabricated by sputtering and Cu reflow process. At first, the Pd and Cu was continuously deposited by sputtering method on oxidized Si support, the Cu reflow process was followed. Microstructure of the surface and permeability of the membrane was investigated depending on various reflow temperature, time, Pd/cu composition and supports. With respect to our result, Pd-Cu thin film (90 wt.% Pd/10 wt.% Cu) deposited by sputtering process with thickness of $2{\mu}m$ was heat-treated for Cu reflow The voids of the membrane surface were completely filled and the dense crystal surface was formed by Cu reflow behavior at $700^{\circ}C$ for 1 hour. Cu reflow process, which is adopted for our work, could be applied to fabrication of dense Pd-alloy membrane for hydrogen separation regardless of supports. Ceramic or metal support could be easily used for the membrane fabricated by reflow process. The Cu reflow process must result in void-free surface and dense crystalline of Pd-alloy membrane, which is responsible for improved selectivity oi the membrane.

Hydrogen Permeation Performance of Ni48Nb32Zr20 Alloy Membrane Coated with Pd by Sputtering (스퍼터링으로 Pd가 코팅된 Ni48Nb32Zr20 합금분리막의 수소 투과 성능)

  • Min Chang Shin;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • In modern times, when a change in the energy paradigm is required, hydrogen is an attractive energy source. Among these hydrogen purification technologies, technology using a membrane is attracted attention as a technology that can purify high purity hydrogen at low cost. However, palladium(Pd), which is mostly used because of its excellent hydrogen separation performance, is very expensive, so a replacement material is needed. In this study, a alloy membrane was manufactured from an alloy of niobium (Nb), which has high hydrogen permeability but is weak to hydrogen embrittlement, and nickel (Ni) and zirconium (Zr), which have low hydrogen permeability but are highly durable. Hydrogen permeation characteristics were confirmed under conditions of 350~450 ℃ at 1 to 4 bar. The maximum hydrogen permeation flux was 0.69 ml/cm2/min for the Ni48Nb32Zr20 alloy membrane without Pd coating, and 13.05 ml/cm2/min for the Pd coated alloy membrane.

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition (스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Park Jeong-Won;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

Preparation and Performance Analysis of Pd-Ag Alloy Hydrogen Membrane with GO/γ-Al2O3 Interlayers (그래핀 옥사이드와 감마 알루미나 중간층을 도입한 Pd-Ag 합금 수소 분리막 제조 및 성능 분석)

  • Sung Woo Han;Jeong In Lee;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.5
    • /
    • pp.318-326
    • /
    • 2024
  • In this experimental, a GO/γ-Al2O3 intermediate layer was coated onto an α-Al2O3 support using vacuum coating and dip-coating methods, and a Pd-Ag membrane was fabricated via electroless plating. Pd and Ag were sequentially coated onto the support through electroless plating, followed by heat treatment at 500℃ for 18 h in an H2 atmosphere to form the alloy. The surface and cross-secsion of the fabricated membrane was observed using SEM and the thickness of the Pd-Ag membrane was measured to be 1.88 ㎛, while the thickness of the GO/γ Pd-Ag membrane was 1.07 ㎛. EDS analyses confirmed the formation of a Pd-Ag alloy with a composition of Pd-77% and Ag-23%. Gas permeation experiments were conducted with pure H2 and H2/N2 mixed gases. The maximum H2 flux of the Pd membrane was 0.53 mol/m2·s at 450℃ and 4 bar, whereas the Pd-Ag membrane exhibited a higher flux of 0.76 mol/m2·s under the same conditions. The separation factor in the H2/N2 mixed gas experiment was measured to be 2626 for the Pd membrane and 13,808 for the Pd-Ag membrane at 450℃ and 4 bar.

Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition (표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성)

  • Lim, Da-Sol;Kim, Se-Hong;Kim, Do-Hui;Cho, Seo-Hyun;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.277-290
    • /
    • 2018
  • In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

A Study on the Palladium Alloy Membrane for Hydrogen Separation (수소 정제용 팔라듐 합금 분리막 연구)

  • Woo, Byung-Il;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.5
    • /
    • pp.232-239
    • /
    • 2009
  • This study presented the effect of membrane thickness on hydrogen permeability. Microvoids on the surface of the membrane should not exist for the exact values of hydrogen permeability. Pd-Cu-Ni hydrogen alloy membranes were fabricated by Ni powder sintering, substrate plasma pretreatment, sputtering and Cu reflow process. And this leaded to void-free surface and dense film of Pd-Cu-Ni hydrogen alloy membrane. Hydrogen permeation test showed that hydrogen permeability increased from 2.7 to $15.2ml/cm^2{\cdot}min{\cdot}atm^{0.5}$ as membrane thickness decreased from 12 to $4{\mu}m$. This represented the similar trend as a hydrogen permeability of pure palladium membrane based on solution-diffusion mechanism.

Preparation of Pd/Al2O3, Pd/Ag/Al2O3 Membranes and Evaluation of Hydrogen Permeation Performance (Pd/Al2O3, Pd/Ag/Al2O3 분리막의 제조와 수소 투과 성능 평가)

  • Lee, Jeong In;Shin, Min Chang;Zhuang, Xuelong;Hwang, Jae Yeon;Kim, Eok yong;Jeong, Chang-Hun;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.116-125
    • /
    • 2022
  • In this experiment, an α-Al2O3 ceramic hollow fiber was used as a support, and a hydrogen membrane plated with Pd and Pd-Ag was manufactured through electroless plating. The Pd-Ag membrane was annealed at 500℃ for 10 h to form an alloy of Pd and Ag. It was confirmed that it became a Pd-Ag alloy through EDS (Energy Dispersive X-ray Spectroscopy) analysis. Also, the thickness of the Pd, Pd-Ag plating layer was measured to be about 8.98 and 9.29 ㎛ through SEM (Scanning Electron Microscope) analysis respectively. Hydrogen permeation experiment was performed using the H2 gas and mixed gas (H2 and N2) in the range of 350~450℃ and 1-4 bar using the prepared hydrogen membrane. Under the H2 gas condition, the Pd and Pd-Ag membrane has a flux of up to 21.85 and 13.76 mL/cm2·min and also separation factors of 1216 and 361 were obtained in the mixed gas at 450℃ and 4 bar conditions respectively.

Effects of CO and $CO_2$ on Hydrogen Permeation through Pd-coated V-Ti-Ni Alloy Membranes (Pd 코팅된 V-Ti-Ni 합금 분리막을 통한 수소투과에서 CO와 $CO_2$의 영향)

  • Jeon, Sung-Il;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2011
  • The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane. The hydrogen permeation characteristics of Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane have been investigated in the pressure range 1-3 bar under pure hydrogen and hydrogen mixture gas with carbon dioxide and carbon monoxide at $450^{\circ}C$. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was $5.36mL/min/cm^2$ for a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane (thick: 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen fluxes were 4.46, 5.20, $3.91mL /min/cm^2$ for$V_{53}Ti_{26}Ni_{21}$ alloy membrane using $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ as the feed gas respectively. Therefore, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure when $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD results after permeation test that the Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane had good stability and durability for various mixtures feeding condition.