DOI QR코드

DOI QR Code

Hydrogen Permeation Performance of Ni48Nb32Zr20 Alloy Membrane Coated with Pd by Sputtering

스퍼터링으로 Pd가 코팅된 Ni48Nb32Zr20 합금분리막의 수소 투과 성능

  • Min Chang Shin (Department of Biochemical & Chemical Engineering, Dongguk University) ;
  • Jung Hoon Park (Department of Biochemical & Chemical Engineering, Dongguk University)
  • 신민창 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Received : 2024.02.19
  • Accepted : 2024.03.27
  • Published : 2024.04.30

Abstract

In modern times, when a change in the energy paradigm is required, hydrogen is an attractive energy source. Among these hydrogen purification technologies, technology using a membrane is attracted attention as a technology that can purify high purity hydrogen at low cost. However, palladium(Pd), which is mostly used because of its excellent hydrogen separation performance, is very expensive, so a replacement material is needed. In this study, a alloy membrane was manufactured from an alloy of niobium (Nb), which has high hydrogen permeability but is weak to hydrogen embrittlement, and nickel (Ni) and zirconium (Zr), which have low hydrogen permeability but are highly durable. Hydrogen permeation characteristics were confirmed under conditions of 350~450 ℃ at 1 to 4 bar. The maximum hydrogen permeation flux was 0.69 ml/cm2/min for the Ni48Nb32Zr20 alloy membrane without Pd coating, and 13.05 ml/cm2/min for the Pd coated alloy membrane.

에너지 패러다임의 변화가 요구되는 현대에 수소는 매력적인 에너지원이다. 이러한 수소를 정제하는 기술 중에서 분리막을 이용한 기술은 저비용으로 고순도의 수소를 정제할 수 있는 기술로 주목받고 있다. 그러나 수소 분리 성능이 뛰어난 팔라듐(Pd)은 가격이 매우 비싸 이를 대체한 소재가 필요하다. 본 연구에서는 수소 투과 성능은 좋으나 수소 취성에 약한 니오븀(Nb)과 수소 투과 성능은 떨어지나 내구성이 뛰어난 니켈(Ni)과 지르코늄(Zr)을 혼합한 합금으로 분리막을 제조하여 1~4 bar, 350~450 ℃ 조건에서 수소 투과 특성을 확인하였다. Pd를 코팅하지 않은 Ni48Nb32Zr20 분리막의 경우 최대 0.69 ml/cm2/min의 투과량을 보였으며, Pd가 코팅된 경우에는 최대 13.05 ml/cm2/min의 투과량을 보였다.

Keywords

Acknowledgement

본 연구는 한국전력공사의 2021년 선정 기초연구개발 과제 연구비에 의해 지원되었음 (과제번호: R21XA01-30)

References

  1. B. Singh, A. H. Stromman, and E. G. Hertwich, "Scenarios for the environmental impact of fossil fuel power: Co-benefits and trade-offs of carbon capture and storage", Energy, 45, 762-770 (2012).  https://doi.org/10.1016/j.energy.2012.07.014
  2. J. Suebsiri and M. Wilson, "A model of carbon capture and storage with demonstration of global warming potential and fossil fuel resource use efficiency", Energy Procedia, 4, 2465-2469 (2011).  https://doi.org/10.1016/j.egypro.2011.02.141
  3. M. Pourbaba and S. Zirakkar "Utilization of renewable energy to produce electrical energy (Hydrogen Energy)", Procedia Eng., 21, 1088-1095 (2011).  https://doi.org/10.1016/j.proeng.2011.11.2115
  4. S. Hienuki, H. Mitoma, M. Ogata, I. Uchida, and S. Kagawa, "Environmental and energy life cycle analyses of passenger vehicle systems using fossil fuel-derived hydrogen", Int. J. Hydrog. Energy, 46, 36569-36580 (2021).  https://doi.org/10.1016/j.ijhydene.2021.08.135
  5. G. Xu, M. Yang, S. Li, M. Jiang, and H. Rehman, "Evaluating the effect of renewable energy investment on renewable energy development in China with panel threshold model", Energy Policy, 187, 114029 (2024). 
  6. F. Taghizadeh-Hesary and N. Yoshino, "Sustainable solutions for green financing and investment in renewable energy projects", Energies, 13, 788 (2020). 
  7. R. Bredesen, K. Jordal, and O. Bolland "High-temperature membranes in power generation with CO2 capture", Chem. Eng. Process., 43, 1129-1158 (2004).  https://doi.org/10.1016/j.cep.2003.11.011
  8. J. Shu, B. P. A. Grandjean, A. V. Neste, and S. Kaliaguine "Catalytic palladium-based membrane reactors: A review", Can. J. Chem. Eng., 69, 1036-1060 (1991).  https://doi.org/10.1002/cjce.5450690503
  9. W. Chen, X. Hu, R. Wang, and Y. Huang, "On the assembling of Pd/ceramic composite membranes for hydrogen separation", Sep. Purif. Technol., 72, 92-97 (2010).  https://doi.org/10.1016/j.seppur.2010.01.010
  10. E. Magnone, S. I. Jeon, J. H. Park, and E. Fleury, "Relationship between microstructure and hydrogen permeation properties in the multiphase Ni21Ti23Nb56 alloy membranes", J. Membr. Sci., 384, 136-141 (2011).  https://doi.org/10.1016/j.memsci.2011.09.014
  11. H. Yukawa, C. Tsukada, T. Nambu, and Y. Matsumoto, "Hydrogen solubility and permeability of V-W-Mo alloy membrane for hydrogen separation and purification", J. Alloy. Compd., 580, 386-390 (2013).  https://doi.org/10.1016/j.jallcom.2013.06.110
  12. K. Hashi, K. Ishikawa, T. Matsuda, and K. Aoki "Microstructure and hydrogen permeability in Nb-Ti-Co multiphase alloys", J. Alloy. Compd., 425, 284-290 (2006).  https://doi.org/10.1016/j.jallcom.2006.01.028
  13. A. E. Lewis, H. Zhao, H. Syed, C. A. Wolden, and J. D. Way, "PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide", J. Membr. Sci., 465, 167-176 (2014).  https://doi.org/10.1016/j.memsci.2014.04.022
  14. S. Yamaura, Y. Shimpo, H. Okouchi, M. Nishida, O. Kajita, and A. Inoue "The effect of additional elements on hydrogen permeation properties of melt-spun Ni-Nb-Zr amorphous alloys", Mater. Trans., 45, 330-333 (2004).  https://doi.org/10.2320/matertrans.45.330
  15. T. Lai, S. S. Singh, A. S. S. Singaravelu, K. S. Vadari, A. Khosravi, N. Chawla, and M. L. Lind, "Hydrogen permeability and mechanical properties of NiNb-M (M = Sn, Ti and Zr) amorphous metallic membranes", J. Alloy. Compd., 684, 359-365 (2016).  https://doi.org/10.1016/j.jallcom.2016.05.100
  16. S. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Y. Shimpo, M. Nishida, H. Kimura, E. Matusbara, and A. Inoue, "Hydrogen permeation and structural features of melt-spun Ni-Nb-Zr amorphous alloys", Acta Mater., 53, 3703-3711 (2005).  https://doi.org/10.1016/j.actamat.2005.04.023
  17. Y. S. Lee, J. H. Shim, and J. Y. Suh "A finite outlet volume correction to the time lag method: the case of hydrogen permeation through V-alloy and Pd membranes", J. Membr. Sci., 585, 253-259 (2019).  https://doi.org/10.1016/j.memsci.2019.05.048
  18. X. Li, F. Huang, D. Liu, X. Liang, R. Chen, M. Rettenmayr, Y. Su, J. Guo, and H. Fu, "V-Cr-Cu dual-phase alloy membranes for hydrogen separation: An excellent combination of ductility, hydrogen permeability and embrittlement resistance", J. Membr. Sci., 524, 354-361 (2017).  https://doi.org/10.1016/j.memsci.2016.11.020
  19. S. Jayalakshmi, V. S. Vasantha, E. Fleury, and M. Gupta, "Characteristics of Ni-Nb-based metallic amorphous alloys for hydrogen-related energy applications", Appl. Energy, 90, 94-99 (2012).  https://doi.org/10.1016/j.apenergy.2011.01.040
  20. M. Dolan, N. Dave, L. Morpeth, R. Donelson, D. Liang, M. Kellam, and S. Song, "Ni-based amorphous alloy membranes for hydrogen separation at 400 C", J. Membr. Sci., 326, 549-555 (2009).  https://doi.org/10.1016/j.memsci.2008.10.030
  21. S. Hao and D. S. Sholl "Comparison of first principles calculations and experiments for hydrogen permeation through amorphous ZrNi and ZrNiNb films", J. Membr. Sci., 350, 402-409 (2010).  https://doi.org/10.1016/j.memsci.2010.01.017
  22. S. Hara, N. Hatakeyama, N. Itoh, H. M. Kimura, and A. Inoue "Hydrogen permeation through amorphous-Zr36- xHfxNi64-alloy membranes", J. Membr. Sci., 211, 149-156 (2003).  https://doi.org/10.1016/S0376-7388(02)00416-7
  23. S. Lim, E. Magnone, M. C. Shin, J. W. Kang, K. Y. Lee, C. H. Jeong, and J. H. Park, "Simple scalable approach to advanced membrane module design and hydrogen separation performance using twelve replaceable palladium-coated Al2O3 hollow fibre membranes", J. Ind. Eng. Chem., 114, 391-401 (2022).  https://doi.org/10.1016/j.jiec.2022.07.028
  24. J. Song, B. Meng, X. Tan, and S. Liu, "Surface-modified proton conducting perovskite hollow fibre membranes by Pd-coating for enhanced hydrogen permeation", Int. J. Hydrog. Energy, 40, 6118-6127 (2015).  https://doi.org/10.1016/j.ijhydene.2015.03.057
  25. A. G. Gil, M. H. M. Reis, D. Chadwick, Z. Wu, and K. Li, "A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation", Int. J. Hydrog. Energy, 40, 3249-3258 (2015).  https://doi.org/10.1016/j.ijhydene.2015.01.021
  26. W. H. Chen and J. Escalante, "Influence of vacuum degree on hydrogen permeation through a Pd membrane in different H2/N2 gas mixtures", Renew. Energy, 155, 1245-1263 (2020).  https://doi.org/10.1016/j.renene.2020.04.048
  27. Y. X. Yang, X. Z. Li, X. Liang, R. R. Chen, J. J. Guo, H. Z. Fu, and D. M. Liu, "Preparation of Pd membrane with high permeability and thermal stability on porous YSZ-Al2O3 tubes by two-step CeO2 modification", Trans. Nonferrous Met. Soc. China, 33, 3439-3451 (2023). https://doi.org/10.1016/S1003-6326(23)66345-9