• Title/Summary/Keyword: Payload Fairing

Search Result 35, Processing Time 0.026 seconds

Acoustic Load Reduction in the Payload of Small Launch Vehicle by using Resonators (공명기를 이용한 소형위성발사체 탑재부의 음향하중 저감)

  • Seo, Sang-Hyeon;Jeong, Ho-Kyeong;Park, Soon-Hong;Jang, Young-Soon;Yi, Yeong-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.234-237
    • /
    • 2007
  • To protect a satellite and electronic equipment from the acoustic load generated by rocket propulsion system, many launch vehicle use acoustic blanket. Acoustic load is main source of random vibration working on the payload. Most high frequency region of the acoustic loads is reduced by payload fairing skins and acoustic blanket, but low frequency region is not. In order to reduce acoustic load of low frequency region, we designed array resonator panel which was made of composite materials. Insertion loss capacity of the payload fairing with acoustic blanket was verified from PLF acoustic test in the acoustic chamber.

  • PDF

Pyroshock Prediction of the Satellite Launch Vehicle at the Payload Fairing Separation (인공위성 발사체 노즈페어링 분리 시 구조물의 충격량 예측)

  • Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon;Lee, Yeoung-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.250-253
    • /
    • 2005
  • This paper is investigates the separation shock of payload fairing. Separation test of subscale PLF using half separation device and half PLA is performed. Resulting shock loads at equipment bay and fairing joint are measured. Pyroshock estimation is performed using AUTOSEA Pyroshock Module. Input data to analysis model is obtained from the separation test results of subscale PLF. And model of AUTOSEA is updated comparing results between tests and analysis.. This enables us to validate the AUTOSEA model. Tuned model of subscale PLF and separation device is used to update full scale model, and the shock analysis result of full scale model is estimated in this paper. This paper also discusses the results regarding the difficulty of structural modeling and its numerical implementation in AutoSEA2 Software.

  • PDF

FLOW ANALYSIS OF THE ON-BOARD SYSTEM FOR THE AIR SUPPLY TO THE PAYLOAD FAIRING OF A LAUNCH VEHICLE (발사체 탑재물 페어링 내부 공기 공급을 위한 탑재 시스템 유동 해석)

  • Ok H.;Kim Y.;Kim I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.269-273
    • /
    • 2005
  • The on-board system for the air supply to the payload fairing(PLF) of a launch vehicle using both high and low pressure air was designed. The design concept was obtained from the CFD analysis of a Russian interstage air supply system, and a collector was adopted to expand the high pressure air. To verify that the on-board system would work as designed, a simplified axisymmetric computational model was made and a CFD analysis was also performed. It was found that the flow ejected from the hole of the collector expands to the Mach number of 4 and is soon retarded due to the action of viscosity. It was also found that a small gap between the low pressure duct and equipment bay wall can cause large velocity in PLF over the velocity requirement and no gap should be allowed in the design.

  • PDF

발사전 가열 해석 - Delta II 자료 분석

  • Choi, Sang-Ho;Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.126-134
    • /
    • 2005
  • Before the launch, launch vehicle is set up a few days ago at launch pad to check process and to supply fuels, etc. During the prelaunch process, the payload is exposed to the thermal environments. The purpose of a prelaunch thermal analysis is to predict maximum/minimum liftoff temperature of payload fairing and to evaluate air conditioning performance. The prelaunch thermal analysis of Delta II PLF is performed using Sinda/fluint, general thermal/fluid analyzer. The results are analyzed and compared with Delta II report.

  • PDF

PRELAUNCH THERMAL ANALYSIS OF KSLV-I PAYLOAD FAIRING

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.356-359
    • /
    • 2004
  • Prelaunch thermal analysis of the KSLV (Korea Space Launch Vehicle)-I PLF (Payload Fairing) was performed to predict maximum/minimum liftoff temperatures and to evaluate of air conditioning performance. Prelaunch thermal analysis includes internal air conditioning effect, external convective heating/cooling, radiation exchange with the ground and sky, radiation between spacecraft and PLF, and solar radiation incident on PLF. Analysis was performed at two extreme conditions, hot day condition and cold day condition. The results showed that the maximum liftoff temperature was $53^{\circ}C$ and the minimum liftoff temperature was $-3.8^{\circ}C$. It was also found that conditioned air supplying, in $20{\pm}2^{\circ}C\;and\;1200\;m^3/hr$, is sufficient to keep the internal air in required temperature range.

  • PDF

Prediction of the Dynamic Derivatives of Separated Payload Fairing Halves by the CFD Analysis of Forced Harmonic Motions (강제조화운동 전산유동해석을 통한 분리된 페어링 동안정 미계수 예측)

  • Kim, Yeong-Hun;Ok, Ho-Nam;Kim, In-Seon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • A review has been made on what kind of method can be applied to predict the dynamic derivatives of the separated PLF(Payload Fairing) halves of a launch vehicle in consideration of technology and budget. An optimal approach is selected considering the geometric characteristics of the PLF halves, the aerodynamic conditions and the required accuracy. The time history of aerodynamic force/moment coefficients are obtained for the forced harmonic motions by solving the unsteady Euler equations derived with respect to the inertial reference frame. and the dynamic derivatives are deduced by integration of the aerodynamic coefficients for one period. In this research, the dynamic derivatives are presented for 0.6$\leq$ M $\leq$2.0, $-180^{\circ}$ $\leq$$\alpha$ $\leq$$180^{\circ}$ and $-90 ^{\circ}$$\leq$$\beta$$\leq$$90 ^{\circ}$.

  • PDF

해석해를 이용한 발사시 위성체 열해석

  • Choi, Joon-Min;Kim, Hui-Kyung;Hyun, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Satellite mounted on the launch vehicles experiences several environmental heating, such as direct solar flux, Earth IR, Albedo, and free molecular heating during faring jettison-separation launch stage. So, the most outer payload box of satellite is under the worst hot condition. The thermal governing equation is reduced into 1st order ordinary differential equation and analytic solution is acquired if payload box is assumed as a single lumped mass. Applying the analytic solution, we can predict the temperature increase of payload box experienced the worst hot condition, easily.

  • PDF

Development and Flight Test of Educational Water Rocket CULV-1 for Implementation of Launch Vehicle Separation Sequence and Imaging Data Acquisition (발사체 분리과정모사 및 단계별 영상획득이 가능한 교육용 물로켓 CULV-1 개발 및 비행시험)

  • Lee, Myeongjae;Park, Taeyong;Kang, Soojin;Jang, Sueun;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • In this study, we proposed a water rocket CULV-1 (Chosun University Launch Vehicle-1). Unlike a conventional water rocket, CULV-1 can perform the booster rocket, fairing, and payload separation like an actual launch vehicle and also the imaging data acquisition. The conceptual and critical design of the proposed CULV-1 have been performed considering the operation characteristics. The verification tests have been performed from subsystem to system level in accordance with the established test specifications and verification procedures. Through the final launch test of the flight model, we have verified the design effectiveness of the proposed separation mechanisms for water rocket applications and the mission requirements of the CULV-1 also have been complied.

Analysis of payload compartment venting of satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.437-448
    • /
    • 2017
  • The problem of flow through the vent is formulated as an unsteady, nonlinear, ordinary differential equation and solved using Runge-Kutta method to obtain pressure inside payload faring. An inverse problem for prediction of the discharge coefficient is presented employing measured internal pressure of the payload fairing during the ascent phase of a satellite launch vehicle. A controlled random search method is used to estimate the discharge coefficient from the measured transient pressure history during the ascent period of the launch vehicle. The algorithm predicts the discharge coefficient stepwise with function of Mach number. The estimated values of the discharge coefficients are in good agreement with differential pressure measured during the flight of typical satellite launch vehicle.

Analysis and Test of Dynamic Responses of Rocket Payload Section Induced by Acoustic Excitation (음향 가진에 의한 로켓 탑재부의 동적 응답 해석 및 시험)

  • Park, S.H.;Jeong, H.K.;Seo, S.H.;Jang, Y.S.;Yi, Y.M.;Cho, K.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.717-720
    • /
    • 2005
  • Acoustic loads generated by a rocket propulsion system cause severe random vibrations on payloads. In developing a new launch vehicle, a random vibration level must be specified before the detailed design of payloads or electronic equipments. This paper deals with prediction procedures of a random vibration level on payload section of KSLV-I. The prediction is based on statistical energy analysis. In order to verify the prediction methodology, test and analysis on a sub-scale payload section are performed. The predicted results subject to very high level of acoustic loads show a good agreement with the test results performed in the high intensity acoustic chamber. The predicted random vibration level on payload section of KSLV-I is also presented in this paper.

  • PDF