• Title/Summary/Keyword: Pavement crack

Search Result 186, Processing Time 0.026 seconds

Development of an Optimal Trajectory Planning Algorithm for an Automated Pavement Crack Sealer

  • Yoo, Hyun-Seok;Kim, Young-Suk
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • In the last two decades, several tele-operated and machine-vision-assisted systems have been developed in the construction and maintenance area, such as pavement crack sealing, sewer pipe rehabilitation, and excavation. In developing such tele-operated and machine-vision-assisted systems, trajectory plans are very important tasks for the optimal motions of robots whether their environments are structured or unstructured. This paper presents an optimal trajectory planning algorithm used for a machine-vision-assisted automatic pavement crack sealing system. In this paper, the performance of the proposed optimal trajectory planning algorithm is compared with the greedy trajectory plans, which are used in the previously developed pavement crack sealing systems. The comparison is based on the computational cost vs. the overall gains in crack sealing efficiency. Finally, it is concluded that the proposed algorithm plays an important role in the productivity improvement of the developed automatic pavement crack sealing system.

Pavement Crack Detection and Segmentation Based on Deep Neural Network

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.99-112
    • /
    • 2019
  • Cracks on pavement surfaces are critical signs and symptoms of the degradation of pavement structures. Image-based pavement crack detection is a challenging problem due to the intensity inhomogeneity, topology complexity, low contrast, and noisy texture background. In this paper, we address the problem of pavement crack detection and segmentation at pixel-level based on a Deep Neural Network (DNN) using gray-scale images. We propose a novel DNN architecture which contains a modified U-net network and a high-level features network. An important contribution of this work is the combination of these networks afforded through the fusion layer. To the best of our knowledge, this is the first paper introducing this combination for pavement crack segmentation and detection problem. The system performance of crack detection and segmentation is enhanced dramatically by using our novel architecture. We thoroughly implement and evaluate our proposed system on two open data sets: the Crack Forest Dataset (CFD) and the AigleRN dataset. Experimental results demonstrate that our system outperforms eight state-of-the-art methods on the same data sets.

Field Application and Performance of Continuously Reinforced Concrete Pavement via Mechanical Tube-feeding Method (기계식 연속철근콘크리트포장의 현장 적용성 및 거동 분석 연구)

  • Choi, hooseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2016
  • PURPOSES : The field application and performance of continuously reinforced concrete pavement (CRCP), constructed by using the mechanical tube-feeding method, are evaluated in this study. METHODS: The location of the rebar was evaluated by using the MIRA system. The early-age CRCP performance was evaluated via visual survey, in which the crack spacing and crack width were examined. RESULTS: The location of longitudinal reinforcing bars was evaluated via MIRA testing and the results showed that the longitudinal rebars all lie within a given tolerance limit (${\pm}2.5cm$) of the target elevation. In addition, owing to the low temperature when the concrete was pured, the crack spacing in the Dae-Gu direction is slightly wider than that of the Gwang-Ju direction. Almost all of the crack spacings lay within the range of 1.0 m~3.0 m. A crack width of <0.3 mm was measured at the pavement surface. However, as revealed by the field survey, the crack spacing was not correlated with the crack width. CONCLUSIONS : In CRCP constructed by using the mechanical tube-feeding method, almost all of the longitudinal reinforcing bars lay within the tolerance limit (2.5 cm) of the target elevation. The concrete-placing temperature affects the crack spacing, owing to variations in the zero-stress temperature. Crack survey results show that there is no correlation between the crack spacing and crack width in CRCP.

Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement

  • Pan, Baofeng;Gao, Yuanyuan;Zhong, Yang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.829-841
    • /
    • 2014
  • The main purpose of this study is to determine the effect of overlay on the crack propagation. In order to simplify the problem, a cement concrete pavement is modeled as an elastic plate on Winkler foundation. To derive the singular integral equations, the Fourier transform and dislocation density function are used. Lobatto-Chebyshev integration formula, as a numerical method, is used to solve the singular integral equations. The numerical solution of stress intensity factor at the crack tip is derived. In order to examine the effect of overlay for resisting crack propagation, numerical analyses are carried out for a cement concrete pavement with an embedded crack and a concrete pavement with an asphalt overlay. Results show the significant factors that influence the crack propagation.

Behavior and Resistance to the Reflection Crack of Composite Pavement with Waterproof Membrane (접착식 방수층을 적용한 합성단면포장의 반사균열 저항특성 분석 연구)

  • Suh, Young-Chan;Lee, Yong-Mun;Kim, Jun-Hyung;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • As old concrete pavements of over 20years in age are increasing in expressways, the repair and rehabilitation of concrete pavement have become an important issue. Although asphalt overlay is widely used as an alternative to rehabilitate the old concrete pavement, problems due to infiltrated water such as reflection crack and pothole are imposing a very serious threat to its performance. This study proposes waterproof membrane as a solution to minimize the damage due to reflection crack and infiltrated water, and accelerated pavement testing was carried out for the performance comparison of composite pavement with waterproof membrane and ordinary tack coating. The experiment used water spraying to simulate rainfall, and the behavior and moisture resistance characteristics of overlay pavement were analyzed. The experimental result indicated that the strain pattern of waterproof membrane section differed from ordinary tack coating section because waterproof membrane caused the asphalt pavement and concrete pavement to move together. Additionally, since waterproof membrane minimized the infiltration of water and delayed the occurrence of reflection crack by about 70% in comparison to ordinary tack coating method. Moreover, the damage due to infiltrated water also decreased.

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement (아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가)

  • Lee, Jae-Jun;Kim, Seung-Hoon;Baek, Jong-Eun;Lim, Jae-Kyu;Kim, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.

Field Test and Analysis of Joint Depths and Timing Contraction Joint Sawing for Concrete Pavement (콘크리트포장의 줄눈깊이 및 절단시기에 관한 유도균열 거동특성 연구)

  • 홍승호;양성철;엄주용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.469-474
    • /
    • 1999
  • The object of study is analysis to joint crack behavior of cracked joint concrete pavement. In the new constructing concrete pavement, joint crack behavior was compared general joint depth D/4 with joint depth D/3 and D/5 that it's environmental effects changed temperature and humidity. After joint saw cutting joint section was predicted crack at joint depth D/5 test section from the result for monitoring development of crack. In the setting of data logger system of the joint section, it's data compared see with the naked eye. In the research, development of crack at the joint section should effect to joint saw timing latter than joint depth. This performance could be the minimum of deterioration to the early curing. In this research, At new constructing of joint concrete pavement of highway, the monitoring system be setting after finished paving and joint sawing. The system and see with the naked eye could be analysis to pavement behaviors from collecting data at the test section. This system could be monitoring shot term and long term. In this report, joint section of crack behavior analysis used to collected data during a month after paving and joint sawing.

  • PDF

Field Investigation into Early Age Behavior of Joint Plain Concrete Pavement

  • Park, Dae-Geun;Suh, Young-Chan;Kim, Hyung-Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1053-1060
    • /
    • 2003
  • The temperature variation of the concrete pavement in the early age significantly affects the initiation and propagation of its early age cracks. This implies that the measurement and analysis of early age temperature trend are necessary to examine the causes of early age cracks in the concrete pavement. In this study, it is investigated how the early age temperature trend in the concrete pavement affects the random crack initiation and behaviors of saw-cut joints using the actual construction site which is located at the KHC test road. During 72 hours after placing the concrete pavement, the ambient air temperature and temperatures at the top, middle, and bottom in the concrete pavement were measured and the random crack initiation in concrete slabs and early age behaviors in the joints were surveyed. The investigation results indicate that the first random crack was initiated at one of the slabs placed in the early morning which have higher temperature changes during early 72 hours. In addition, the joints that were saw-cut in the morning were cracked more rapidly than those saw-cut in the afternoon.

  • PDF

Study on the Effect of SBR Latex on the Properties of Soil Pavement (SBR Latex를 이용한 흙 포장의 재료특성 연구)

  • Lee, Sang Yum;Hwang, Sung Do;Yang, Sung Lin
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.73-82
    • /
    • 2014
  • PURPOSES : The purpose of this study is to determine the optimum addition rate of SBR latex through the evaluation of durability and strength of SBR latex applied soil pavement. Formerly used materials such as fly ash and cement in soil pavement had resulted in decreased durability due to micro crack by heat of hydration and shrinkage crack in winter. However, that agglutinated polymers help adhesion to aggregate increased comes up with preventing the crack opening when the number of capillary tubes of SBR latex get decreased in the hydration process of cement. Therefore, in this study, it is suggested that the evaluation of the field applicability of soil pavement be conducted through the performance lab test in terms of strength increment, adhesion improvement, and crack resistance based on SBR latex addition rate. METHODS : In order to evaluate the field applicability of soil pavement, SBR latex was added 0 to 3% by 1% increment, with fixed cement contents of 3% and 5%. The resistance of shear failure and crack of soil pavement were evaluated by performing the uniaxial compressive strength test and indirect tensile strength test at -20 and $20^{\circ}C$, respectively. RESULTSCONCLUSIONS : It was found out that from both tests, resistance of shear failure and crack were improved with increment of curing time, and especially more than 2% of SBR latex addition rate and 5% cement content gave better results.