
KICEM Journal of Construction Engineering and Project Management

Online ISSN 2233-9582

 35

www.jcepm.org

http://dx.doi.org/10.6106/JCEPM.2012.2.1.035

Development of an Optimal Trajectory Planning

Algorithm for an Automated Pavement Crack Sealer

Hyun-Seok Yoo
1
, and Young-Suk Kim

2

Received October 18, 2011 / Revised February 8, 2012 / Accepted February 13, 2012

Abstract: In the last two decades, several tele-operated and machine-vision-assisted systems have been developed in the

construction and maintenance area, such as pavement crack sealing, sewer pipe rehabilitation, and excavation. In developing such

tele-operated and machine-vision-assisted systems, trajectory plans are very important tasks for the optimal motions of robots

whether their environments are structured or unstructured. This paper presents an optimal trajectory planning algorithm used for

a machine-vision-assisted automatic pavement crack sealing system. In this paper, the performance of the proposed optimal

trajectory planning algorithm is compared with the greedy trajectory plans, which are used in the previously developed pavement

crack sealing systems. The comparison is based on the computational cost vs. the overall gains in crack sealing efficiency. Finally,

it is concluded that the proposed algorithm plays an important role in the productivity improvement of the developed automatic

pavement crack sealing system.

Keywords: crack sealing, machine vision algorithm, trajectory planning, construction automation

I. INTRODUCTION

A. Background and Objectives

Crack sealing is a preventive road crack repair method

that prevents not only further cracking, by delaying the

development of road cracks, but also road damages due to

freezing, by protecting the road substructure with its

waterproof function (Lee, Jeong-Ho et al., 2004). Having

recognized the advantages of crack sealing and the risks

in road maintenance and repair work, many advanced

countries have conducted research on the development of

automated crack sealing equipment since the 1990s.

South Korea, for its part, developed the automated

pavement crack sealer (APCS) in 2001, and the field test

of its prototype was successfully conducted in 2004.

The current machine vision system of APCS consists of

the crack detection and modeling module and the

trajectory planning module. The crack detection and

modeling module aims to accurately detect and model the

spine of the crack network, and is an essential module

that determines the accuracy and quality of APCS.

Thanks to the continuous research and development being

conducted to improve the recognition rate, this module’s

completely automated crack detection rate has reached

95.5% (Yoo, Hyun-Seok et al., 2004). To complement the

module, the manual mapping and editing functions were

added to enable APCS so as to make crack detection and

modeling possible in any circumstance.

On the other hand, the trajectory planning algorithm is

an algorithm that determines in what order the crack

network shall be moved and sealed, and determines the

speed and productivity of APCS.

Currently, the most popular trajectory planning of

APCS is Kim and Haas’s (1998) greedy trajectory

planning algorithm. It is not only easy to implement but

also offers very efficient path results and works fast. Due

to the characteristics of the algorithm, however, it cannot

always guarantee the shortest path, and as the number of

cracks on the road image increases, the idle distance from

the optimal result also tends to increase.

From the viewpoint of the graph theory in computer

engineering, the trajectory planning on APCS is a

problem in which an optimal result cannot be known until

all the trajectories are examined. In general, an optimal

result can be obtained if the number of cracks is small,

while the number of possible trajectories exponentially

increases resulting in tremendous time and cost as the

number of cracks on the road image increases. The actual

result of the field test using APCS shows, however, that

the cracks on the road image are between eight and nine

at most (they are usually between one and four). Such

result signifies that theoretically, all the trajectories within

a certain range can be examined, and therefore, it is

possible to develop an optimal trajectory planning

algorithm that always guarantees the optimal result.

Furthermore, the recent advancement of computing

technology improves the scope that can be handled by the

optimal trajectory planning algorithm.

This research aims to develop an optimal trajectory

planning algorithm for APCS through effective trajectory

1 Member and research professor, Ph.D., Department of Architectural Engineering, Inha University, hsyoo.cm@inha.ac.kr
2 Lifetime member and professor, Ph.D., Department of Architectural Engineering, Inha University, youngsuk@inha.ac.kr

http://www.jcepm.org/
http://dx.doi.org/10.6106/JCEPM.2012.2.1.035

Hyun-Seok Yoo, and Young-Suk Kim

 36

KICEM Journal of Construction Engineering and Project Management

planning data modeling, and to evaluate the degree of

improvement in the performance and scope of the

developed algorithm compared to the existing algorithm.

The result of the research is expected to improve the

productivity of APCS.

B. Scope and Methodology

The scope of this research includes the analysis of the

problems of the existing trajectory planning algorithm

among the machine vision algorithms for controlling

APCS, suggesting a new trajectory planning algorithm,

and comparing the two algorithms. The methodology of

the research includes the following:

 (1) to introduce the concept and process of the vision

algorithm, which can be used to analyze the role and

importance of the trajectory planning algorithm;

(2) to analyze the performance and problems of the

previously developed trajectory planning algorithm;

(3) to realize an effective trajectory modeling method and

data structure in a crack network that exists in images;

and

(4) to analyze the performance and advantages and

disadvantages of the existing greedy algorithm and the

proposed algorithm, each of which was realized using a

programming language, and to suggest an effective

application method for APCS.

 ① Machine vision algorithm

② H/W

FIGURE I

APCS

II. ROLE OF THE TRAJECTORY PLANNING ALGORITHM

AND SURVEY OF THE PREVIOUS ALGORITHM

A. Construction of the Machine Vision Algorithm and

Role of the Trajectory Planning Algorithm

The existing vision algorithm, as shown in Figure 1-

①, consists of five phases: image acquisition, noise

removal, crack detection and mapping, trajectory

planning, and crack sealing. In image acquisition, the

image of the road surface is acquired by a CCD camera

that uses an 8bit gray bitmap with a 640×480 resolution

on top of the APCS. The analog images shot by the CCD

camera are digitally converted and stored through the

frame grabber, and depending on the user’s initial zone

setting, image processing is performed.

In the crack detection phase, the cracks are

distinguished in a binary system from the road images

acquired by the CCD camera, through which the noise

can be intelligently removed. A previous study (Yoo,

Hyun-Seok, 2004) removed noise objects from the road

images by successfully using the neural-network learning

technology.

The cracking-mapping algorithm, the third phase of the

existing algorithm, controls the movement of the sealant

injection device so it would move accurately along the

center of the crack. It is categorized into full automatic

mapping and manual mapping. Full automatic mapping

leaves only the skeleton of the crack with the thinning

algorithm after the noise is fully removed.

The disadvantage of full automatic mapping is that it

works only after the noise has been completely removed.

On the other hand, manual mapping is not greatly

affected by the remaining noise or the damaged cracks

and can accurately extract the center line.

Trajectory planning, the fourth phase, determines the

order of movement of the automation equipment’s sealant

injection device against several extracted cracks. Based

on the original point (the end point of the upper left side),

the sealant injection device moves one time according to

the crack centerline within the image, and if there exist

several cracks, the idle distance between the cracks will

show a considerable difference according to the crack

sealing order. The goal of the trajectory planning

algorithm is to detect the network with the shortest idle

distance among numerous crack networks.

After trajectory planning, the program combines the

crack mapping and trajectory data to output the hardware

instructions in text format. These hardware instructions

will be transmitted to the equipment control driver based

on a protocol, and the sealant injection device will be

operated based on these hardware instructions.

The mapping data based on the trajectory generally use

array or linked list data structures. What is needed for

trajectory planning among the mapping data is the x-y

coordinate of both ends (front and rear points) of each

trajectory as well as the number of trajectories (hereafter,

“N”). In this paper, a structure that combines the array

and linked list structures was used. The first front [] and

H/W Controller

Sealing

H/W Control

Path Planning

Vision Algorithm

Capture

Semi

Fully

Image Acq. UI

CCD Camera

Image Display

Frame Grabber

Binarizing
Noise

filtering

Dilating Thinning
Data

modeling

Edge

Linking

Draw

Line

Create

Node

Create

Box

Crack

Recognition

Move

Node

Completely Automated Method

Man-Machine Balanced Method

Operator

Path

Planning

H/W

Operation

 Crack Detecting

Crack Mapping

 Crack editing

if more

node?

Manual Editing

if error

node?

Manual

Editing

CCD Camera

Industrial Computer

and Touch Screen

X-Y framed

manipulator

Development of an Optimal Trajectory Planning Algorithm for an Automated Pavement Crack Sealer

 37

Vol.2, No.1 / Mar 2012

end [] points of each trajectory are referred to by the array

pointer, and the internal trajectory data are linked by the

string-type linked list structure. Shown in Figure 2 are the

data in which the front and rear points of each trajectory

are used in the trajectory planning. Based on n number of

trajectory data stored in a queue, the information required

for trajectory planning are the x-y coordinates of both the

front and rear points of each trajectory. These coordinates

are the values that both array points of the queue point

out. For example, the starting point of trajectory 3 in

Figure 2 has the front[3] → (4,439) coordinate, and its

end point coordinate is rear[3]→(508,245). The wood-

branch-shaped cracks, which are often detected in crack

images, should be separated by string-type linear data and

stored. The trajectory planning algorithm has the

following principle:

FIGURE II

STORAGE STRUCTURE OF THE CRACK NETWORK MAPPING DATA

(1) The original point of the trajectory planning is

located at the end point of the upper left area of the

image, and its coordinate is (0,0). The original point is

the location at which the sealant injection device of the

automation equipment waits for the work order.

(2) All the crack objects are sealed at one time. In other

words, once sealed, the crack objects will be excluded

from the next trajectory movement.

(3) The sum of the crack sealing distance is identical

among various trajectory plans, and therefore, the most

efficient trajectory planning is the one whose idle

distance is the shortest.

(4) As the automation equipment moves to the next work

area after completing the sealing on all the crack

objects, the return distance of the injection device to

the original location is not included in the idle distance.

The trajectory planning algorithm is directly related to

the work speed and productivity of the automation

equipment. If the average speed of the sealant injection

device is 150 mm/sec, its work area will be 2.0×1.5 m,

and the resolution of the image area will be 640×480. If

the average size of one pixel is 3.125 mm and the idle

distance between the optimal and worst trajectory plans is

800 pixels, the actual idle distance of the sealant injection

device will be 2,500 mm, and each sealing will delay the

work time by 16.6 seconds. Considering that the average

daily crack sealing workload is 1.4 km, up to two hours

of productivity difference per day will be generated only

by the trajectory planning algorithm.

B. The Existing Trajectory Planning Algorithms and

Problems

1) Greedy Trajectory Planning Algorithm

Kim and Haas’s greedy trajectory planning algorithm

(1998) establishes trajectory planning in such a way that

if various crack networks exist within a work area, the

trajectory will move in sequence from the visited point to

the closest crack network based on the following process:

(1) Search for the closest end point among the unvisited

cracks.

(2) Move the sealant injection device to the closest end

point and seal the crack up to the opposite end point,

and once the task is completed, record the crack as the

visited crack.

(3) Set the end point opposite the direction to which the

sealant injection device moved as the visited point of

the search.

(4) Verify if there is any unvisited crack from the visited

point of the search, and if there is any, return to phase

(1). If there is none, move the sealant injection device

to the original point and complete the crack sealing

process.

In the greedy trajectory planning algorithm, the

original point becomes the first visited point, and once the

sealant injection device moves to a point of the closest

crack network, the opposite end point of the crack

network becomes the next visited point. By repeating

such process, the greedy trajectory planning algorithm

can plan the trajectory among the cracks. Shown in

Figure 3 is an image of four crack networks, for which

the process of the greedy trajectory planning algorithm is

as follows:

(1) Calculate the distance between both ends of the four

crack networks (i.e., eight end points) based on the

original point, and move the sealant injection device to

the closest end point (0F) (Figure 3-①).

(2) Seal the crack from 0F to 0R, set 0R as the visited

point, measure the distance to the other points, and

move the sealant injection device to the closest end

point (1F) (Figure 3-②).

(3) Seal the crack from 1F to 1R, set 1R as the visited

point, measure the distance to the other points, and

move the sealant injection device to the closest end

point (2R) (Figure 3-③).

(4) Seal the crack from 2R to 2F, set 2F as the visited

point, measure the distance to the other points, and

move the sealant injection device to the closest end

point (3F) (Figure 3-④).

(5) Seal the crack from 3F to 3R and return the sealant

injection device to the original point.

4

3

2

1

5

1

2

3

4

5

Front[]

Rear[]

NULL

NULL

NULL

NULL

NULL

NULL

(204,204)

(512,114)

(508,245)

(455,510)

(203,204)...(4,194)(3,194)

(259,1)

(4,439)

(404,349)

(258,1) ... (511,114)

(5,440) ... (507,244)

(404,350) ... (454,510)

Hyun-Seok Yoo, and Young-Suk Kim

 38

KICEM Journal of Construction Engineering and Project Management

① 1st movement

② 2nd movement

③ 3rd movement

④4th movement

FIGURE III

GREEDY TRAJECTORY PLANNING ALGORITHM PROCESS

Kim and Haas’s greedy trajectory planning algorithm

allows good paths to be found within a very short time. In

fact, the time that it takes for this algorithm to calculate

the trajectory for ten or more cracks in one image is

3milliseconds. The result of the calculation of the greedy

trajectory planning algorithm, however, as shown in

Figure 3, has a considerable difference from the shortest-

distance trajectory. The distance calculated by the greedy

algorithm is 945 pixels whereas the actual shortest

distance (home-1F-2R-0F-3F) is 882 pixels, a difference

of 63 pixels (7.1%). Moreover, such a difference tends to

increase as the number of cracks (n) increases.

2) Trajectory Planning Using Simulated Annealing

To improve the existing greedy algorithm, Mathurin

and Velinsky (2000) developed a trajectory planning

algorithm that uses simulated annealing (SAa), a

metaheuristic algorithm. It creates a permutation of the

crack trajectories, randomly selects a neighboring

trajectory, and discovers a shorter trajectory using a

probability function. It uses Boltzmann probability

distribution to avoid a large amount of calculation, and

0.88 as α vector, the temperature reduction function.

According to Feng et al. (2005), the trajectory planning

algorithm based on simulated annealing may not always

guarantee shortest-trajectory planning, as shown in Figure

4, as it is reported to reduce the idle distance compared to

that of the existing greedy algorithm by up to over 15%.

① Greedy algorithm

② Simulated annealing

FIGURE IV

RESULT OF SIMULATED ANNEALING (FENG ET AL., 2005).

III. TRAJECTORY PLANNING ALGORITHM DESIGN

A. Observation of the Shortest-Trajectory Planning

Algorithm

The trajectory planning for the sealant injection device

is closely related to the traveling salesman problem(TSP),

a representative NP-class
1

 in algorithm studies that

determines the least expensive path for a salesman visits

all n number of points (no duplicate visits) and returns to

the original place (Figure 5). That is, TSP implies that all

the possible paths should be searched in order to find the

shortest distance in a given network.

Since TSP must visit all n number of points, the

computing time
2
 becomes O(n!). While when n is small,

not much time is used until the process is completed, if n

increases, the required time multiplies by n, resulting in

requiring considerable time as n increases. For example,

if the time required for three points is 1 millisecond, the

time that it would take to find the shortest distance among

20 points is as much as 6.84 million years. Thus, TSP is

categorized as an NP class.

FIGURE V

TSP (HOROWITZ ET AL., 1993).

1 In 1971, Stephen Cook defined NP class as a category of

problems which, if P class is a group of problems that can be

solved within a given time and not-P class is a group of

problems that cannot be solved within a given time, can be

solved within a given time and whose solution can be verified

(Decker, 1996).
2 Asymptotic notation is a method of expressing the

comparison of the increase rate of a function with that of

another function. It is used to simplify the computing time of

an algorithm or the latter part of an infinite series. In defining

the computing time of a function, the big O notation, which

expresses the worst-case computing time, is widely used. The

actual calculation time of an algorithm is measured by

millisecond using the clock() function, which is supported by

the system in which the algorithm has been implemented.

(0,0)
Home Point

(3,194)

(204,204)

(259,1)

(512,114)

(4,439)

(508,245)

(404,349)

(455,510)

Path[0]

Path[1]

Path[2]

Path[3]

0F

0R

1F

1R
2R

2F

3F 3R

(0,0)
Home Point

(3,194)

(204,204)

(259,1)

(512,114)

(4,439)

(508,245)

(404,349)

(455,510)

Path[0]

Path[1]

Path[2]

Path[3]

0F

0R

1F

1R
2R

2F

3F 3R

(0,0)

Home Point
(3,194)

(204,204)

(259,1)

(512,114)

(4,439)

(508,245)

(404,349)

(455,510)

Path[0]

Path[1]

Path[2]

Path[3]

0F

0R

1F

1R
2R

2F

3F 3R

(0,0)

Home Point
(3,194)

(204,204)

(259,1)

(512,114)

(4,439)

(508,245)

(404,349)

(455,510)

Path[0]

Path[1]

Path[2]

Path[3]

0F

0R

1F

1R
2R

2F

3F 3R

1
2

0

7

3

4

5

6

San Francisco
Denver

Chicago

Boston

Los Angeles

New Orleans Miami

New York

1700

1000300

800

1200

1400

1000

900

250

1500

1000

Development of an Optimal Trajectory Planning Algorithm for an Automated Pavement Crack Sealer

 39

Vol.2, No.1 / Mar 2012

As has been mentioned, TPS has no developed

algorithm and simply searches all paths and finds the

optimal one. When the number of places to visit (n) is

large, the time cost of TSP is considerable, and therefore,

a greedy algorithm used in Dijkstra (1959), Kruskal

(1956), Prim (1957), and Sollin (1962) is instead used. A

greedy algorithm is a method that chooses for the next

path the one with the minimal cost weight value among

the points that have yet to be visited. While a greedy

algorithm can help find a good solution, it does not

guarantee the optimal path. Particularly, as n increases,

the probability of finding the optimal path decreases.

The trajectory planning algorithm of APCS is to plan

the trajectory order for moving the sealant injection

device to the cracks and sealing them. If the number of

cracks existing in the image is n, the number of possible

trajectory plans is 2n×n!. In other words, if there are

eight cracks, 10,321,920 trajectory plans are possible. The

optimal trajectory plan is the plan with the shortest

trajectory, and there always exist one or more optimal

trajectory plans.

FIGURE VI

TRAJECTORY PLANS FOR APCS.

The trajectory plan for APCS is very similar to that for

TSP and is one step more complex than the latter.

Whereas the computing time of TSP is O(n!), the

trajectory plan for APCS is O(n!×2n). While TSP is

simply about visiting points, the trajectory plan for APCS

becomes more complex by 2n because one crack (n) of

APCS has two vertices. Figure 6 shows the tree-shape

intuitive modeling of four cracks in the image, which

shows a total of 384 trajectories. In such model, however,

the size of the tree increases exponentially as the number

of cracks (n) increases. The size of a tree is determined by

multiplying the number of nodes (TN) by the size of a

node (8 bytes). TN based on n is shown in equation (1).

As such, when modeling the whole tree where the number

of cracks (n) is eight, the size of the whole tree becomes

136 Mbytes; if n is nine, the size of the tree becomes 2.4

Gbytes, which may exceed the memory capacity of a

regular computer.


























n

i

i

n

n

n

n

n

n

n

i

n

n

n

n

n

n

nnnnTN

0

1

!2

!2

1

!2

)!1(2

!2

!2

!2

!2)1(221





 [E. 1]

As with TSP, the trajectory planning for APCS is an NP

class. That is, the optimal path can be known only by

visiting all the possible paths. If the computing time of

the trajectory plan for APCS is O (n!×2n), however, it

can be divided into O(n!) and O(2n). In other words, the

problem can be divided into those about the order in

which the cracks should be visited (O(n!)) and those

about the direction of crack networks that the sealant

injection device should approach (O(2n)). This method is

a key element of the solution to the trajectory planning

for APCS.

B. Two-Phase Tree Algorithm for Searching for the

Shortest Trajectory

The optimal trajectory planning algorithm models all

the possible paths that pass n number of trajectories based

on the original point O(0, 0) by data structure, and selects

the trajectory with the shortest idle distance through

calculation. The method that this research uses to model

the number of all possible trajectories is a two-phase tree

structure. If the group of the order in which, based on the

original point, all the trajectories pass once is the

trajectory group (Table 1), the first tree determines the

number of possible cases with regard to the order of each

trajectory within the trajectory group, without considering

both ends (front[], rear[]) of the cracks. The second tree

in two-phase tree algorithm determines the number of

cases with regard to the order of points that will enter

both ends of each trajectory (front[], rear[]) from the

trajectory order acquired in the first tree. From this two-

phase tree structure, the number of all possible cases in

relation to n number of trajectories can be acquired, and

later, the idle distance can be calculated.

FIGURE VII

THE FIRST TREE TRAJECTORY.

The first tree uses the number of cracks (n). For

example, in Figure 7, the number of trajectories is four.

Based on this value, the trajectory group ({0, 1, 2, 3, 4})

with five elements (trajectories), which includes the

original point (0), is created. The goal of the first tree is to

acquire the permutation series based on the order of

elements within the trajectory group. First, if the process

of selecting and moving to a specific trajectory from the

original point is modeled as a tree structure (Figure 7(a)),

H

0F 0R 1F 1R 2F 2R 3F 3R

1F 1R 2F 2R 3F 3R

2F 2R 3F 3R

3F 3R

0F 0R 1F 1R 2F 2R

1F 1R 0F 0R... ...

... ...3F 3R 2F 2R 2F 2R 0F 0R 0F 0R 1F 1R 1F 1R

O

1

32 4

3 4 2 4 2 3

4 3 4 2 3 2

2

31 4

3 4 1 4 1 3

4 3 4 1 3 1

3

21 4

2 4 1 4 1 2

4 2 4 1 2 1

4

21 3

2 3 1 3 1 2

3 2 3 1 2 1

O

1

32 4

3 4 2 4 2 3

2

31 4

3 4 1 4 1 3

3

21 4

2 4 1 4 1 2

4

21 3

2 3 1 3 1 2

O

1

32 4

2

31 4

3

21 4

4

21 3

O

1 2 3 4

Level 0

Level 1

Level 0

Level 1

Level 2

Level 0

Level 1

Level 2

Level 3

Level 0

Level 1

Level 2

Level 3

Level 4

(a) 1
st
 Tree Division

(b) 2
nd

 Tree Division

(3) 3
rd

 Tree Division

(d) 4
th

 Tree Division

Hyun-Seok Yoo, and Young-Suk Kim

 40

KICEM Journal of Construction Engineering and Project Management

the original point (0) is expressed by the highest parent

node. Four trajectories to which the device can move

from the original point are then expressed as child nodes.

In other words, the beginning point is the parent node,

and a trajectory to which the sealant injection device can

move is expressed as a child node.

In level 2, the four nodes of level 1 become parent

nodes, to which the three trajectories that were not passed

are expressed as child nodes. Here, the child nodes of one

node are identical to the sibling nodes of a parent node.

For example, the child nodes whose parent is trajectory 1

node in level 1 in Figure 5(b) are trajectories 2, 3, and 4,

save the original point and trajectory 1. Similarly, the

sibling nodes of trajectory 1 in level 1 are trajectories 2,

3, and 4. With the same iterative method, the tree for each

node can be constructed in levels 3 and 4. Once the

construction of the first tree is completed, each trajectory

will be traversed to acquire the result of the trajectory

group, which is shown in Table 1 in the (trajectory series)

format.

The generalization of the number of cases with regard

to the order of crack trajectories based on the results of

Figure 7 and Table 1 shows that, as in Table 2, the

number of trajectory groups whose elements are n

trajectories is n!, which is the same as that of the terminal

nodes.
TABLE I

TRAJECTORY GROUPS IN PHASE 1 TREE

S Series Trajectory Group1

[1]1 0 → 1 → 2 → 3 → 4

[2]1 0 → 1 → 2 → 4 → 3

[3]1 0 → 1 → 3 → 2 → 4

[4]1 0 → 1 → 3 → 4 → 2

……

[21]1 0 → 4 → 2 → 1 → 3

[22]1 0 → 4 → 2 → 3 → 1

[23]1 0 → 4 → 3 → 1 → 2

[24]1 0 → 4 → 3 → 2 → 1

TABLE II

NO. OF NODES BY LEVEL

The second tree uses the trajectory groups acquired

from the first tree. For example, the trajectories

(elements) of the third trajectory group ([3]) are {0, 1, 3,

2, 4}. Each trajectory in the trajectory group has two end

points (front[n], rear[n], hereafter F[n] and R[n]). The

goal of the second tree is to determine the advancing

point with regard to both end points of a trajectory within

the given trajectory group.

FIGURE VIII

THE SECOND TREE TRAJECTORY

The second tree, based on trajectory group [3]
1
={0, 1,

2, 3, 4} acquired from first tree, has a complete binary

tree, as shown in Figure 8. Each node shown in the

second tree pertains to the entry point. For example, node

F[1], shown as [F[1]-R[1]] in Figure 8, enters F[1],

moves along the crack centerline, and stops at R[1].

Shown in Table 3 is the result of the trajectory groups in

the second tree in the form of [trajectory

series]
1
[trajectory series]

2
.

TABLE III

TRAJECTORY GROUPS OF THE SECOND TREE

When the number of possible cases with regard to the

trajectory order to the entry point, based on the results

shown in Figure 8 and Table 3, is generalized, the number

of possible cases that may occur at one trajectory group

while considering the order of entry points becomes 2n

(Table 4). In the second tree, the number of terminal node

is identical with that of the first tree.

As this is the number of one group {0, 1, 3, 2, 4}

among the 24 trajectory groups in the first tree, the

number of possible cases of all trajectory groups in the

first tree (i.e., the total number of trajectory groups to n

number of trajectories) becomes n!×2
n
.

TABLE IV

 NO. OF NODES BY LEVEL

The calculation of the idle distance uses the trajectory

groups in the second tree as the input values. For

example, in Table 3, trajectory group [3]1[14]2 can be

expressed by

Level 0

Level 1

Level 2

Level 3

Level 4

F[1]~R[1] R[1]~F[1]O

F[1]

R[3]F[3]

F[2] R[2]

F[4] R[4] F[4] R[4] F[4] R[4] F[4] R[4]

F[2] R[2]

R[1]

R[3]F[3]

F[2] R[2]

F[4] R[4] F[4] R[4] F[4] R[4] F[4] R[4]

F[2] R[2]

Level (L) No. of Child Nodes

(C)
No. of Nodes (T)

0 n 1

1 n-1 n

2 n-2 n×(n-1)

3 n-3 n×(n-1)×(n-2)

…

n-2 2 n×(n-1)×(n-2)×...×3

n-1 1 n×(n-1)×(n-2)×...×3×2

n 0 n×(n-1)×(n-2)×...×3×2×1 = n!

 C = n-L T = n! / C! (except when C is 0)

Level (L) No. of Child Nodes (C) Total Node Nos. (T)

0 2 1 = 20

1 2 2 = 21

2 2 4 = 22

3 2 8 = 23

…

n-2 2 2n-2

n-1 2 2n-1

n 2 2n

 C = 2 T = 2L

Series Trajectory Group2

[3]1[1]2 0 → F[1] → F[3] → F[2] → F[4]

[3]1[2]2 0 → F[1] → F[3] → F[2] → R[4]

[3]1[3]2 0 → F[1] → F[3] → R[2] → F[4]

[3]1[4]2 0 → F[1] → F[3] → R[2] → R[4]

(omit)

[3]1[13]2 0 → R[1] → R[3] → F[2] → F[4]

[3]1[14]2 0 → R[1] → R[3] → F[2] → R[4]

[3]1[15]2 0 → R[1] → R[3] → R[2] → F[4]

[3]1[16]2 0 → R[1] → R[3] → R[2] → R[4]

Development of an Optimal Trajectory Planning Algorithm for an Automated Pavement Crack Sealer

 41

Vol.2, No.1 / Mar 2012

[3]1[14]2= {0 → R[1] → R[3] → F[2] → R[4]}

= {0 → R[1]∼F[1] → R[3]∼F[3] →F[2]∼R[2] → R[4]

∼F[4] },

and since the (→) region is a non-sealing distance, the

total idle distance among the cracks is

TOTAL IDLE DISTANCE

= THE DISTANCE BETWEEN ORIGINAL POINT (0) AND R[1]

+ THE DISTANCE BETWEEN F[1] AND R[3]

+ THE DISTANCE BETWEEN F[3] AND F[2]

+ THE DISTANCE BETWEEN R[2] AND R[4]

In the actual programming stage, as shown in Figure 9,

the straight-line distance values between these sets of two

points are calculated in advance to speed up the

calculation, and the result is stored in a two-dimensional

sequence, which is called upon during the calculation

process. For example, the calculation of the distance

between F[1] and R[3] in Table 5 refers to the sequence

distance [1][6] to acquire the value of 287.1, resulting in

a faster calculation speed.

TABLE V

COST-NEIGHBORING MATRIX TO THE DISTANCE BETWEEN TWO POINTS

The total idle distance for trajectory group [3]1[14]2 is

963.7 pixels (=341.2+287.1+217.4+118.0). This is the

42nd result among the total of 384 result values. The

optimal trajectory search algorithm calculates the idle

distance of each of the n!×2n number of trajectory

groups and selects the group with the smallest value,

which is actually trajectory group [21]1[6]2={0→F[4]→

R[2]→R[1]→F[3]}, whose idle distance is 569.2 pixels.

In the calculation of the idle distances of all the

trajectories, the second tree always guarantees the

shortest trajectory.

FIGURE IX

DATA STRUCTURE MODEL.

The actual data structure model of the two-phase tree

algorithm is a tree structure with reverse pointers, as

shown in Figure 9, and under the terminal nodes, a

separate pointer queue is created to load the trajectory

data one by one. This is because loading the trajectory

data from the bottom up is faster and simpler than the

other way around. Figure 10 shows the flowchart of the

two-phase tree trajectory planning algorithm, and Figure

11 is the text file output of the result from the two-phase

tree algorithm, where the number of cracks (n) is 4. Here,

H is the original point, and 0-3 are the crack numbers.

FIGURE X

TWO-PHASE TREE ALGORITHM FLOWCHART.

C. One-Phase Tree Algorithm for Reducing the Time Cost

Although the two-phase tree algorithm guarantees the

shortest distance, it requires a very high time cost. In fact,

when the number of cracks (n) is 7, the calculation time

exceeds 3 seconds, and if n is 8, the calculation time

exceeds 72 seconds. To address this problem of the two-

phase tree algorithm, this research developed the one-

phase tree algorithm that uses only first tree for the

trajectory series, and that selects the closest distance for

the front and end points of the crack. Without the creation

and deletion of the second tree, the one-phase tree

algorithm can reduce the total calculation load by half

compared to the two-phase algorithm. Shown in Figure

12 is the one-phase trajectory planning algorithm

flowchart.

O

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

2

1 3 4

3 4 1 4 1 3

4 3 4 1 3 1

3

1 2 4

2 4 1 4 1 2

4 2 4 1 2 1

4

1 2 3

2 3 1 3 1 2

3 2 3 1 2 1

Path_Front Path_Rear

Null

create the first tree

Two-phase tree module

delete the second tree

load one trajectory

idle distance <

shortest distance?

set the idle distance as the shortest

distance

create H/W instructions

Is there another

trajectory series?

Yes

No

Yes

calculate the idle distance

No

store the trajectory series [array]

delete the first tree

create the second tree

Vertex O F[1] R[1] F[2] R[2] F[3] R[3] F[4] R[4]

 Dist. [0][0] [1][0] [2][0] [3][0] [4][0] [5][0] [6][0] [7][0] [8][0]

O [0][0] 0.0 446.0 341.2 340.4 575.2 245.1 339.1 248.0 529.7

F[1] [1][0] 446.0 0.0 286.6 288.6 536.4 201.0 287.1 505.4 585.4

R[1] [2][0] 341.2 286.6 0.0 2.2 288.1 216.5 2.2 257.4 307.4

F[2] [3][0] 340.4 288.6 2.2 0.0 287.2 217.4 2.0 255.3 305.7

R[2] [4][0] 575.2 536.4 288.1 287.2 0.0 504.5 289.2 371.2 118.0

F[3] [5][0] 245.0 201.0 216.5 217.4 504.5 0.0 215.4 342.2 511.9

R[3] [6][0] 339.1 287.1 2.2 2.0 289.2 215.4 0.0 255.5 307.6

F[4] [7][0] 248.0 505.4 257.4 255.3 371.2 342.2 255.5 0.0 298.2

R[4] [8][0] 529.7 585.4 307.4 305.7 118.0 511.9 307.6 298.2 0.0

Hyun-Seok Yoo, and Young-Suk Kim

 42

KICEM Journal of Construction Engineering and Project Management

FIGURE XI

TREE EXECUTION RESULT.

FIGURE XII

ONE-PHASE TREE ALGORITHM FLOWCHART

IV. ANALYSIS OF THE PERFORMANCE OF THE PROPOSED

ALGORITHM

A. Environment for the Performance Evaluation of the

Trajectory Planning Algorithm

The most important items in evaluating the

performance of the proposed algorithm are the calculation

time and the idle distance between the cracks, which are

directly related to the overall processing time of the

vision algorithm. In this study, Microsoft Foundation

Class (MFC)’s clock() function was used to measure the

calculation time. The clock() function measures time by

millisecond. The measurement scope of the calculation

time is from the point in time when the trajectory

planning function is executed to the point in time when

the result is outputted by text. The idle distance between

cracks is the coordinate difference between two points

when the size of one pixel is considered 1, based on the

640×480 pixel raw image. In other words, the distance

between A(x1, y1) and B(x2, y2), D, is shown in the

equation below, and the idle distance between cracks is

the sum of all the idle distance values that exist within the

trajectory.

2

12

2

12~
)()(yyxxD

BA
 [E. 2]

The data that were used in evaluating the performance

of the proposed trajectory planning algorithm were a total

of 270 images, each of which was a 640×480 pixel raw

image. The number of cracks increased from 1 to 9 in

every 30 images. Shown in Table 6 is the environment for

the performance measurement of the proposed algorithm.

TABLE VI

SYSTEM SPECIFICATIONS USED IN THE PERFORMANCE MEASUREMENT

FIGURE XIII
APCS CRACK NETWORK MODELING S/W.

The developed two-phase and one-phase tree

algorithms were integrated into the APCS crack network

modeling S/W shown in Figure 13, which was realized

using Microsoft Visual C++ 6.0. The said S/W has

integrated all the functions required for the operation of

APCS (e.g., image acquisition, crack detection, crack

network modeling, trajectory planning, and motion

control).

TABLE VII

MEASUREMENT RESULTS OF THE PROPOSED TRAJECTORY PLANNING

ALGORITHM

n

Average Calculation Time

(Unit: milliseconds)

Average Idle Distance

(Unit: pixel)

Greedy
One-phase

Tree

Two-phase

Tree
Greedy

One-phase

Tree

Two-phase

Tree

1 0 0 0 52.38 52.38 52.38

2 0 0 0 89.08 87.09 86.28

3 0 0 0 154.51 145.26 140.68

4 0 0 2 197.86 178.53 171.03

5 0 0 18 232.76 209.23 205.03

6 0 4 239 268.83 227.12 218.90

7 0 33 3,618 278.63 237.02 230.70

8 0 289 72,843 299.14 261.06 245.67

9 2 3,557 1,767,980 325.94 273.21 255.38

create the first tree

One-phase tree Module

delete the first tree

load one trajectory series

calculate the idle distance

idle distance <

shortest distance?

set the idle distance

as the shortest distance

create H/W instructions

Is there another

trajectory series?

Yes

No

Yes

determine the closest point

(front or rear)

No

CPU Pentium 4 2.4Ghz(C) Northwood

RAM DDR 512M (400MHz)

OS Windows XP (SP1)

Development of an Optimal Trajectory Planning Algorithm for an Automated Pavement Crack Sealer

 43

Vol.2, No.1 / Mar 2012

B. Measurement Results of the Performance of the

Proposed Trajectory Planning Algorithm

① Calculation time of the proposed trajectory planning algorithm

② Idle distance of the proposed trajectory planning algorithm

FIGURE XIV

CALCULATION TIME AND IDLE DISTANCE OF THE PROPOSED

TRAJECTORY PLANNING ALGORITHM.

Table 7 shows the results of the measurement of the

calculation time and idle distance of the existing greedy

algorithm and the developed two-phase and one-phase

tree algorithms. While the calculation time of the greedy

algorithm was 2 miliseconds or less at most despite the

increase in the number of cracks (n) to 9, that of the one-

phase tree trajectory planning algorithm was 3,557

milliseconds on average when n was 9, exceeding 1

seconds.

Also, the calculation time of the two-phase tree

trajectory planning algorithm was 3,618 milliseconds on

average when n was 7, exceeding 1 second. As shown in

② in Figure 14, compared to the two-phase tree trajectory

planning algorithm that guarantees the optimal result, the

greedy algorithm found a more distant trajectory by an

average of 18.24%, and as n increased, the difference also

increased. Meanwhile, the one-phase tree trajectory

planning algorithm found a more distant trajectory by

4.03% on average compared to the two-phase tree

trajectory planning algorithm. As for the greedy

algorithm, as n increased, the difference also increased.

C. Application of the Trajectory Planning Algorithm for

APCS

① Calculation time of proposed model

② Idle distance of proposed model

FIGURE XV

TRAJECTORY PLANNING MODEL OF APCS.

As has been mentioned, the two-phase and one-phase

tree trajectory planning algorithms have a limited scope

of application according to the number of cracks, and

therefore, it was ensured in this research that the proposed

algorithms for APCS appropriate to the number of cracks

were to be executed. In other words, if n was between 1

and 6, the two-phase tree algorithm was executed, and if

n was between 7 and 8, the one-phase tree algorithm was

executed. If n was 9 or over, the greedy trajectory

planning algorithm was executed. As a result, as shown in

Figure 15, the trajectory planning model completed its

process within up to 0.3 seconds, and the idle distance

also showed an average difference of 5.7% compared to

the optimal value.

V. CONCLUSION

A trajectory planning algorithm uses automatically

recognized crack trajectory information from APCS to

find the shortest trajectory for the sealant injection device

of APCS, and to perform sealing fast and efficiently. In

this research, two-phase and one-phase tree algorithms

were developed, and their performances were compared

to that of the existing greedy algorithm. The following

conclusions can be drawn based on the study results that

were obtained:

(1) In this study, the role of the trajectory planning

algorithm, among the machine vision algorithms for

APCS, was analyzed, and the concept of the trajectory

planning algorithm and the change in productivity

1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

s
e

c

n

 Greedy

 One-phase Tree

 Two-phase Tree

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

s
e

c

n

 Greedy

 One-phase Tree

 Two-Phase Tree

1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

se
c

n

 Proposed Model

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

se
c

n

 Proposed Model

 Two-phase Tree

Hyun-Seok Yoo, and Young-Suk Kim

 44

KICEM Journal of Construction Engineering and Project Management

according to the difference in performance were

examined.

(2) The results of the analysis of the existing greedy

trajectory planning algorithm showed that while it is a

very fast and effective algorithm, its accuracy was

decreased as the number of cracks increased.

(3) Through the theoretical observation of the optimal

trajectory planning algorithm, it was determined that a

trajectory planning algorithm for APCS could be

divided into the first tree, which is about the order of

trajectories, and the second tree, which is about the

order of entry, and could be modeled accordingly.

(4) Through the first tree structure modeling with regard

to the order of trajectories, a trajectory series was

created. By modeling the second tree structure to

determine the order of entry, the two-phase tree

trajectory planning algorithm which calculates all the

passes for n, the number of cracks was then developed.

(5) Furthermore, to reduce the time cost of the two-phase

tree algorithm, one-phase tree trajectory planning

algorithm, which creates the trajectory series with the

first tree and selects the closest location for the order of

crack entry, was developed.

(6) The existing greedy algorithm and the developed

two-phase and one-phase tree algorithms were

developed as S/Ws. Using the 270 images of trajectory

data, the calculation time and the accuracy of each

algorithm were tested. The results showed that while

the greedy algorithm was the fastest, it was the least

accurate (average difference: 18.24%), and that the

two-phase tree algorithm was the slowest but always

produced the optimal trajectory. The one-phase tree

algorithm was faster than the two-phase tree algorithm,

and its average difference was almost close to that of

the two-phase tree algorithm (4.03%).

(7) To have an appropriate algorithm executed according

to n, the number of cracks, the conditions were set so

that when n was between 1 and 6, the two-phase tree

algorithm was to be executed, and when n was between

7 and 8, and 9 or over, the one-phase tree algorithm or

the greedy trajectory planning algorithm was to be

executed, respectively. As a result, the trajectory

planning model of APCS could perform its process

within up to 0.3 seconds, and its idle distance had the

average difference of 5.7% compared to the optimal

value.

Finally, it is concluded that the proposed one-phase and

two-phase tree trajectory planning algorithms could

contribute to the improvement of overall productivity of

APCS. It is also expected that the time and cost

performance of the proposed algorithms would be much

improved, if other optimization algorithms such as

genetic or 2-opt are applied to the optimal trajectory

planning of APCS

ACKNOWLEDGEMENT

This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea

government(MEST) (No. 2011-0027609).

This research was supported by Inha University.

REFERENCES

[1] Y.S. Kim, “Development and Implementation of an Automated

Pavement Crack Sealer”, Final Report by Korea Institute of

Construction and Transportation Technology Evaluation and
Planning, Ministry of Construction and Transportation, pp. 100-

114, 2004.

[2] H.S. Yoo, J.H. Lee, Y.S. Kim, J.R. Kim, “The Development of a
Machine Vision Algorithm for Automation of Pavement Crack

Sealing”, Korean Journal of Construction Engineering and

Management, KICEM, vol. 5, no. 2, pp. 90-104, 2004.
[3] H.S. Yoo, J.H. Lee, Y.S. Kim, N.W. Sung, “A Study on the

Development of Pavement Crack Recognition Algorithm Using

Artificial Neural Network,”, Proceedings of the 2004 Korea
Institute of Construction Engineering and Management, pp. 561-

565, 2004.

[4] J.H. Lee, H.S. Yoo, Y.S. Kim, M.Y. Cho, “A Study on the
Development of an Automated Pavement Crack Sealer”, Korean

Journal of Construction Engineering and Management, KICEM,

vol. 5, no. 2, pp. 162-171, 2004.
[5] E.W. Dijkstra, “A Note on Two Problems in Connection with

Graphs", Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[6] X. Feng, R. Mathurin, S.A. Velinsky, “Practical, Interactive, and
Object-Oriented Machine Vision for Highway Crack Sealing",

Journal of Transportation Engineering, vol. 131, no. 6, pp. 451-
459, June 2005.

[7] F. Glover, A.P. Punnen, “The traveling salesman problem : New

solvable cases and linkages with the development of
approximation algorithms", Journal of the Operational Research

Society, vol. 48, no.5, pp. 502-510, May 1997.

[8] R. Graham, P. Hell, P. "On the history of the minimum spanning
tree problem", Annals of the History of Computing, vol. 7, no. 1,

pp.43-57, 1985.

[9] E. Horowitz, S. Sahni, S. Anderson-Freed, “Fundamentals of Data
Structures in C”, W. H. Freeman and Company, 1993.

[10] Y.S. Kim, C.T. Hass, “Path Planning for Machine Vision Assisted,

Teleoperated Pavement Crack Sealer”, Journal of Transportation
Engineering, vol. 124, no. 2, pp. 137-143, March 1998.

[11] K.R. Kirschke, S.A. Velinsky, “Histogram-Based Approach for

Automated Pavement-Crack Sensing”, Journal of Transportation
Engineering, vol. 118, no. 5, pp. 700-710, September 1992

[12] J.B. Kruskal, “On the Shortest Spanning Subtree of a Graph and

the Traveling Salesman Problem”, Proceedings of the American

Mathematical Society, vol. 7, no. 1, pp. 48-50, 1956.

[13] R. Mathurin, S.A. Velinsky, “Simulated Annealing for the Optimal

Trajectory Planning of an Automated Crack Sealing Machine”,

Proceedings ASME design technical conference, 2000.

[14] R.C. Prim, “Shortest Connection Networks and Some

Generalizations”, Bell System Technology Journal, vol. 36, pp.

1389-1401, 1957.

[15] G. Sollin, “Problemes de Recherche Operationelle Report”, C. 41

S.E.G. Paris Le Trace des Canalizations, pp. 15-23, 1962.

