• Title/Summary/Keyword: Pavement Crack Depth

Search Result 19, Processing Time 0.02 seconds

Field Test and Analysis of Joint Depths and Timing Contraction Joint Sawing for Concrete Pavement (콘크리트포장의 줄눈깊이 및 절단시기에 관한 유도균열 거동특성 연구)

  • 홍승호;양성철;엄주용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.469-474
    • /
    • 1999
  • The object of study is analysis to joint crack behavior of cracked joint concrete pavement. In the new constructing concrete pavement, joint crack behavior was compared general joint depth D/4 with joint depth D/3 and D/5 that it's environmental effects changed temperature and humidity. After joint saw cutting joint section was predicted crack at joint depth D/5 test section from the result for monitoring development of crack. In the setting of data logger system of the joint section, it's data compared see with the naked eye. In the research, development of crack at the joint section should effect to joint saw timing latter than joint depth. This performance could be the minimum of deterioration to the early curing. In this research, At new constructing of joint concrete pavement of highway, the monitoring system be setting after finished paving and joint sawing. The system and see with the naked eye could be analysis to pavement behaviors from collecting data at the test section. This system could be monitoring shot term and long term. In this report, joint section of crack behavior analysis used to collected data during a month after paving and joint sawing.

  • PDF

Analysis of the Effect of Pavement Crack Depth of the Cavity Management Grade (포장 균열 깊이가 공동 관리 등급에 미치는 영향 분석)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.449-457
    • /
    • 2020
  • Purpose: The Seoul Metropolitan Government classifies the cavity risks into emergency, priority, general, and observation grades in consideration of the cavity size, asphalt pavement thickness, and pavement depth based on the cavity management grade criteria of Seoul. In this study, the depth of cracking was measured at 17 cracks identified by checking the pavement condition of the cavity at 265 cavities found in the 2019 cavity investigation service. Method: In the first phase, crack width and depth were measured using a vernier caliper, taper gauge, and depth gauge to check the cracks of the identified cavities. In the second phase, the location of the largest crack in the upper road surface was confirmed, and A.C. was drilled to further measure the crack depth. Results: As a result, the cavity management level was raised in nine of the 17 test cavity identified. Therefore, in case of emergency and priority recovery, the grade should be adjusted according to the depth of pavement crack and the thickness of residual A.C. pavement. Conclusion: In the case of cracks in the upper part of the cavity, the crack progression must be determined through the perforation and the remaining asphalt concrete thickness must be determined to determine the cavity grade.

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia;Chen, Xudong;Bu, Jingwu;Guo, Shengshan
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.283-293
    • /
    • 2019
  • The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.

Rubblization of Thick Concrete Pavement (두꺼운 콘크리트포장의 원위치파쇄 기층화공법)

  • Lee Seung-Woo;Han Seung-Hwan;Ko Suck-Bum;Kim Ji-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.105-114
    • /
    • 2006
  • A popular alternative to extend the life of aged pavement is asphalt overlay. However, it has a very serious and inherent shortcoming in deterring a reflection crack. Although joint-rehabilitation and stress-relief techniques have been applied to deter such reflection cracks in aged pavement, the techniques had a limited success only in slowing down the progress of a reflection crack. Rubblization technique rubblizes the concrete pavement slab in situ and uses the rubblized slab as the base material. Then, pavement overlay is applied to finish off the rehabilitation of aged pavement. This rubblization technique has the advantage of solving the problem of reflection cracking completely. When rubblization technique is applied, the upper layer of aged concrete pavement is rubblized between 40mm-70mm in depth. However, the lower layer is typically rubblized more than 100mm in depth. Nevertheless, it is difficult to turn the entire concrete pavement of more than 30cm in depth into rubblized aggregate of appropriate size. Thus, a simulation experiment was carried out to find the appropriate rubblized depth, which avoids the reflection cracking and still maintains the function of subbase, by varying the depth of rubblized depth in loom increments of 0cm, 10cm, and 20cm. The result indicated the optimum rubblized depth was 10cm (Lee, 2006). Additionally, a small rubblizinge equipment was developed in order to derive the rubblization technique appropriate for thick concrete pavement. This equipment was tested out on an experimental pavement, which was constructed with the same standard and specification for the road in actual use, by varying its rubblizing head shape and energy as well as the effective area of rubblization. This experiment led to a prototype equipment for rubblization of thick concrete pavement. The prototype was put into use on a highway, undergoing a test construction and monitoring afterwards. This entire process was necessary for the validation of the proposed rubblization technique.

  • PDF

Relationship between Crack Propagation Depth and Crack Width Movement in Continuously Reinforced Concrete Slab Systems (연속철근 콘크리트 슬래브 시스템의 균열진전 깊이와 균열폭 거동 관계 분석)

  • Cho, Young Kyo;Kim, Seong-Min;Oh, Han Jin;Choi, Lyn;Seok, Jong Hwan
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • PURPOSES : The purpose of this study is to investigate the relationship between the crack propagation depth through a slab and crack width movement in continuously reinforced concrete slab systems (CRCSs). METHODS : The crack width movements in continuously reinforced concrete pavement (CRCP) and continuously reinforced concrete railway track (CRCT) were measured in the field for different crack spacings. In addition, the crack width movements in both CRCP and CRCT were simulated using finite element models of CRCP and CRCT. The crack width movements, depending on the unit temperature change, were obtained from both the field tests and numerical analysis models. RESULTS : The experimental analysis results show that the magnitudes of the crack width movements in CRCSs were related to not only the crack spacing, but also the crack propagation depth. In CRCP, the magnitudes of the crack width movements were more closely related to the crack propagation depths. In CRCT, the crack width movements were similar for different cracks since most were through cracks. If the numerical analysis was performed to predict the crack width movements by assuming that the crack propagates completely through the slab depth, the predicted crack width movements were similar to the actual ones in CRCT, but those may be overestimated in CRCP. CONCLUSIONS : The magnitudes of the crack width movements in CRCSs were mainly affected by the crack propagation depths through the slabs.

Guidelines for Joint Depth Determination and Timing of Contraction Joint Sawcutting for JCP Analyzed with Fracture Mechanics

  • Yang, Sung-Chul;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.145-150
    • /
    • 2006
  • An experiment with the objective of providing guidelines for joint depth determination and timing of contraction joint sawcutting to avert uncontrolled cement concrete pavement cracking has been conducted. Theoretical analysis and laboratory tests were performed to help in understanding and analyzing the field observation. Using two-dimensional elastic fracture mechanics, the influence of several parameters on crack propagation was delineated by a parametric study, involving initial notch ratio, joint spacing, Young's modulus and thermal expansion coefficient of concrete, temperature gradient, and modulus of subgrade reaction. Bimaterials made of rock plus cement mortar and rock plus polymer mortar were applied to the concrete in a field test section, and they were subjected to fracture tests. These tests have shown that fracture mechanics is a powerful tool not only in judging the quality of the jointed cement concrete pavement but also in providing a criterion for crack propagation and delamination. Based on fracture mechanics, a method is proposed to determine the joint depth, sawcut timing, and spacing of the jointed cement concrete pavement. This method has successfully been applied to a test section in Seohaean expressway. This study also summarizes the research results obtained from a field test for jointed plain concrete pavement, which was also carried out on the Seohaean expressway.

Development of Rehabilitation Criteria of National Highway Pavement (국도 아스팔트 콘크리트 포장의 보수공법 결정 기준 연구)

  • Kim, Da-Hae;Kwon, Soo-Ahn;Suh, Young-Chan;Lim, Kwang-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • Currently the reasonability of threshold values for rutting and cracking does not clearly defined at the Pavement Rehabilitation Decision Tree on national highway PMS(Pavement Management System). The goal of this study is to provide the reasonable threshold values for the national highway asphalt concrete pavement rehabilitation. To achieve this goal, test section that represents typical asphalt concrete pavement of national highway was selected and pavement export were participated. Pavement condition survey has been conducted and pavement performance data at the selected roadway section were analyzed. From this study, reasonable threshold values of Pavement Rehabilitation Decision Tree were suggested based on the pavement expert's engineering judgement. In terms of crack repairs, the application of overlay after cutting is required to deteriorated area where existing crack ratio is over 35% and just overlay is required to where crack ratio is over 20%. On rutting, rut depth over 13mm is required to overlay after cutting and rut depth over 10mm is just needed to overlay.

  • PDF

Performance Evaluation of Long-Life Asphalt Concrete Overlays Based on Field Survey Monitoring in National Highways (일반국도 현장조사 모니터링을 통한 장수명 아스팔트 덧씌우기 포장의 공용성 분석)

  • Baek, Jongeun;Lim, Jae Kyu;Kwon, Soo Ahn;Kwon, Byung Yoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.69-76
    • /
    • 2015
  • PURPOSES : Performance evaluation of four types of asphalt concrete overlays for deteriorated national highways. METHODS : Pavement distress surveys for crack rate and rut depth have been conducted annually using an automated pavement survey vehicle since 2007. Linear and non-linear performance prediction models of the asphalt concrete overlays were developed for 43 sections. The service life of the asphalt overlays was defined as the number of years after which a crack rate of 30% or rut depth of 15mm is observed. RESULTS : The service life of the asphalt overlays was estimated as 17.4 years on an average. In 90.7% of the sections, the service life of the overlays was 15 years or more which is 1.5 times the life of conventional asphalt concrete overlays used in national highways. The performance of the overlays was dependent on the type of asphalt mixture, traffic volume levels, and environmental conditions. CONCLUSIONS : The usage of stone mastic asphalt (SMA) and polymer-modified asphalt (PMA) for the overlays provided good resistance to cracking and rutting development. It is recommended that appropriate asphalt concrete overlays must be applied depending on the type of existing pavement distress.

Numerical Analysis of Crack Occurrence and Propagation in Continuously Reinforced Concrete Pavements under Environmental Loading (환경하중에 의한 연속철근콘크리트포장의 균열발생 및 진전 특성 분석)

  • Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.39-49
    • /
    • 2007
  • The objective of this study was to investigate features of transverse crack occurrence and propagation in continuously reinforced concrete pavement(CRCP) when subjected to environmental loading. The finite element model of CRCP was developed and the element removal method was implemented to predict the crack propagation process. To investigate the effect of the type of environmental loading on the CRCP behavior and cracking aspects, the following three different cases were considered: (1) the temperature gradient between top and bottom of the slab does not vary and the constant temperature drop throughout the depth occurs; (2) the temperature at the slab bottom does not vary and the temperature gradient increases; and (3) the temperature between the mid-depth and the bottom of the slab is the same and does not vary and the temperature at the top decreases. The analysis results showed that the crack occurrence and propagation through the depth of the slab in CRCP were significantly affected by the type of environmental loading. The changes in stress distribution and displacements during the crack occurrence and propagation process could also be investigated.

  • PDF

Joint Behavior of Concrete Pavements Using Joint Crack Inducer (줄눈균열 유도장치를 사용한 콘크리트 포장의 줄눈거동)

  • Park, Moon Gil;Choi, Ki Hyo;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.57-65
    • /
    • 2008
  • Joint of concrete pavement contributes to improvement of pavement performance by preventing occurrence of random cracking due to drying shrinkage and temperature changes of concrete slabs at early age. However, saw-cutting operations performed prior to sufficient concrete hardening develop micro-cracking of the concrete near the joints, which may develop to long-term distresses due to repetitious traffic and environmental loadings. To reduce the distresses, the joint crack inducers with heights of 100 mm, 150 mm, and 220 mm and the joint cracking slots with various depth were installed at a test section to investigate occurrence of the joint cracks and their behaviors over 5 months. As the results, higher efficiency of the crack inducing and larger behavior of the joint cracks were observed for the taller joint crack inducer. Higher efficiency of the crack inducing and improvement of the joint performance are warranted by additional investigation and reformation of the joint crack inducer.