• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.028 seconds

Mining Approximate Sequential Patterns in a Large Sequence Database (대용량 순차 데이터베이스에서 근사 순차패턴 탐색)

  • Kum Hye-Chung;Chang Joong-Hyuk
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.199-206
    • /
    • 2006
  • Sequential pattern mining is an important data mining task with broad applications. However, conventional methods may meet inherent difficulties in mining databases with long sequences and noise. They may generate a huge number of short and trivial patterns but fail to find interesting patterns shared by many sequences. In this paper, to overcome these problems, we propose the theme of approximate sequential pattern mining roughly defined as identifying patterns approximately shared by many sequences. The proposed method works in two steps: one is to cluster target sequences by their similarities and the other is to find consensus patterns that ire similar to the sequences in each cluster directly through multiple alignment. For this purpose, a novel structure called weighted sequence is presented to compress the alignment result, and the longest consensus pattern that represents each cluster is generated from its weighted sequence. Finally, the effectiveness of the proposed method is verified by a set of experiments.

Discovery of Behavior Sequence Pattern using Mining in Smart Home (스마트 홈에서 마이닝을 이용한 행동 순차 패턴 발견)

  • Chung, Kyung-Yong;Kim, Jong-Hun;Kang, Un-Gu;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.19-26
    • /
    • 2008
  • With the development of ubiquitous computing and the construction of infrastructure for one-to-one personalized services, the importance of context-aware services based on user's situation and environment is being spotlighted. The smart home technology connects real space and virtual space, and converts situations in reality into information in a virtual space, and provides user-oriented intelligent services using this information. In this paper, we proposed the discovery of the behavior sequence pattern using the mining in the smart home. We discovered the behavior sequence pattern by using mining to add time variation to the association rule between locations that occur in location transactions. We can predict the path or behavior of user according to the recognized time sequence and provide services accordingly. To evaluate the performance of behavior consequence pattern using mining, we conducted sample t-tests so as to verify usefulness. This evaluation found that the difference of satisfaction by service was statistically meaningful, and showed high satisfaction.

Spatial and Temporal Analysis of Land-use Changes Associated with Past Mining in the Kitakyushu District, Japan

  • Rhee, Sungsu;Ling, Marisa Mei;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.40-49
    • /
    • 2013
  • In the beginning of $20^{th}$ century, the coal mining industry had an important role in Japan at which two-thirds of the coal product came from the Kitakyushu-Chikuho District (KCD). As a consequence of mining activities, land-use condition in this district showed notable changes. This paper presented a study of land-use changes in coal mining area by characterizing land-use pattern transition over the last 100 years. In order to carry out the rigorous analysis of land-use, a series of land-use maps over the last 100 years was developed using geographic information systems (GIS). The historic topographic map and another available old data were used to investigate the long-term changes of land-use associated with past mining within the GIS platform. The results showed that the utilization of a series of developed land-use maps successfully indicated the difference of land-use pattern in the KCD before and after the peak of mining activities. The general findings from land-use analysis described that forest and farm lands were lost and turned into abandoned sites in the last 100 years.

Analysis of Graph Mining based on Free-Tree (자유트리 기반의 그래프마이닝 기법 분석)

  • YoungSang No;Unil Yun;Keun Ho Ryu;Myung Jun Kim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.275-278
    • /
    • 2008
  • Recently, there are many research of datamining. On the transaction dataset, association rules is made by finding of interesting patterns. A part of mining, sub-structure mining is increased in interest of and applied to many high technology. But graph mining has more computing time then itemset mining. Therefore, that need efficient way for avoid duplication. GASTON is best algorithm of duplication free. This paper analyze GASTON and expect the future work.

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Analysis and Prediction of Power Consumption Pattern Using Spatiotemporal Data Mining Techniques in GIS-AMR System (GIS-AMR 시스템에서 시공간 데이터마이닝 기법을 이용한 전력 소비 패턴의 분석 및 예측)

  • Park, Jin-Hyoung;Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.307-316
    • /
    • 2009
  • In this paper, the spatiotemporal data mining methodology for detecting a cycle of power consumption pattern with the change of time and spatial was proposed, and applied to the power consumption data collected by GIS-AMR system with an aim to use its resulting knowledge in real world applications. First, partial clustering method was applied for cluster analysis concerned with the aim of customer's power consumption. Second, the patterns of customer's power consumption data which contain time and spatial attribute were detected by 3D cube mining method. Third, using the calendar pattern mining method for detection of cyclic patterns in the various time domains, the meanings and relationships of time attribute which is previously detected patterns were analyzed and predicted. For the evaluation of the proposed spatiotemporal data mining, we analyzed and predicted the power consumption patterns included the cycle of time and spatial feature from total 266,426 data of 3,256 customers with high power consumption from Jan. 2007 to Apr. 2007 supported by the GIS-AMR system in KEPRI. As a result of applying the proposed analysis methodology, cyclic patterns of each representative profiles of a group is identified on time and location.

A single-phase algorithm for mining high utility itemsets using compressed tree structures

  • Bhat B, Anup;SV, Harish;M, Geetha
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1024-1037
    • /
    • 2021
  • Mining high utility itemsets (HUIs) from transaction databases considers such factors as the unit profit and quantity of purchased items. Two-phase tree-based algorithms transform a database into compressed tree structures and generate candidate patterns through a recursive pattern-growth procedure. This procedure requires a lot of memory and time to construct conditional pattern trees. To address this issue, this study employs two compressed tree structures, namely, Utility Count Tree and String Utility Tree, to enumerate valid patterns and thus promote fast utility computation. Furthermore, the study presents an algorithm called single-phase utility computation (SPUC) that leverages these two tree structures to mine HUIs in a single phase by incorporating novel pruning strategies. Experiments conducted on both real and synthetic datasets demonstrate the superior performance of SPUC compared with IHUP, UP-Growth, and UP-Growth+algorithms.

Big Data Analytics of Construction Safety Incidents Using Text Mining (텍스트 마이닝을 활용한 건설안전사고 빅데이터 분석)

  • Jeong Uk Seo;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.581-590
    • /
    • 2024
  • This study aims to extract key topics through text mining of incident records (incident history, post-incident measures, preventive measures) from construction safety accident case data available on the public data portal. It also seeks to provide fundamental insights contributing to the establishment of manuals for disaster prevention by identifying correlations between these topics. After pre-processing the input data, we used the LDA-based topic modeling technique to derive the main topics. Consequently, we obtained five topics related to incident history, and four topics each related to post-incident measures and preventive measures. Although no dominant patterns emerged from the topic pattern analysis, the study holds significance as it provides quantitative information on the follow-up actions related to the incident history, thereby suggesting practical implications for the establishment of a preventive decision-making system through the linkage between accident history and subsequent measures for reccurrence prevention.

An Efficient Approach to Mining Maximal Contiguous Frequent Patterns from Large DNA Sequence Databases

  • Karim, Md. Rezaul;Rashid, Md. Mamunur;Jeong, Byeong-Soo;Choi, Ho-Jin
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.51-57
    • /
    • 2012
  • Mining interesting patterns from DNA sequences is one of the most challenging tasks in bioinformatics and computational biology. Maximal contiguous frequent patterns are preferable for expressing the function and structure of DNA sequences and hence can capture the common data characteristics among related sequences. Biologists are interested in finding frequent orderly arrangements of motifs that are responsible for similar expression of a group of genes. In order to reduce mining time and complexity, however, most existing sequence mining algorithms either focus on finding short DNA sequences or require explicit specification of sequence lengths in advance. The challenge is to find longer sequences without specifying sequence lengths in advance. In this paper, we propose an efficient approach to mining maximal contiguous frequent patterns from large DNA sequence datasets. The experimental results show that our proposed approach is memory-efficient and mines maximal contiguous frequent patterns within a reasonable time.

Optimal pre-conditioning and support designs of floor heave in deep roadways

  • Wang, Chunlai;Li, Guangyong;Gao, Ansen;Shi, Feng;Lu, Zhijiang;Lu, Hui
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.429-437
    • /
    • 2018
  • In order to reduce deformation of roadway floor heave in deep underground soft rockmass, four support design patterns were analyzed using the Fast Lagrangian Analysis of Continua (FLAC)3D, including the traditional bolting (Design 1), the bolting with the backbreak in floor (Design 2), the full anchorage bolting with the backbreak in floor (Design 3) and the full anchorage bolting with the bolt-grouting backbreak in floor (Design 4). Results show that the design pattern 4, the full anchorage bolting with the bolt-grouting backbreak in floor, was the best one to reduce the deformation and failure of the roadway, the floor deformation was reduced at 88.38% than the design 1, and these parameters, maximum vertical stress, maximum horizontal displacement and maximum horizontal stress, were greater than 1.69%, 5.96% and 9.97%. However, it was perfectly acceptable with the floor heave results. The optimized design pattern 4 provided a meaningful and reliable support for the roadway in deep underground coal mine.