• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.035 seconds

Sentiment Analysis and Opinion Mining: literature analysis during 2007-2016 (감정분석과 오피니언 마이닝: 2007-2016)

  • Li, Jiapei;Li, Xiaomeng;Xiam, Xiam;Kang, Sun-kyung;Lee, Hyun Chang;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.160-161
    • /
    • 2017
  • Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language Opinion mining and sentiment analysis(OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2007-2016. For the literature analysis, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, research areas. More detailed manual analysis of the data is also performed to identify popular approaches (machine learning and lexcon-based) used in these publications, levels (documents, sentences or aspect-level) of sentiment analysis work done and major application areass of OMSA.

  • PDF

An Study on the Product Purchase Patterns using Association Rule (연관규칙을 활용한 상품 구매 패턴분석에 관한 연구)

  • Jung, Yong Gyu;Park, Jeong Kwon;Lee, Jeong Chan;Choi, Eun Young
    • Journal of Service Research and Studies
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • It is growing in size of database in companies. This caused to develope data mining techniques to predictive information from the large database. Costs and other effects can give variety of sales exploding through the analysis of the differences. Analysis of the various classification techniques, various angle can be analyzed point of view of the area information. The analysis of rules and patterns associated with a large amount of useful information from the database can be analyzed effectively. Goods store were analyzed using association rules, one of the data mining analysis techniques. Through this type of existing products according to analyze customer buying patterns, data mining has been studied to establish strategic marketing analysis.

  • PDF

An Analysis of Research Trends in Computational Thinking using Text Mining Technique (텍스트 마이닝 기법을 활용한 컴퓨팅 사고력 연구 동향 분석)

  • Lee, Jaeho;Jang, Junhyung
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.543-550
    • /
    • 2019
  • In 2006, Janet Wing defined computational thinking and operated SW education as a formal curriculum in the UK in 2013. This study collected related research papers by using computational thinking, which has recently increased in importance, and analyzed it using text mining. In the first, CONCOR analysis was conducted with the keyword of computational thinking. In the second, text mining of the components of computational thinking was selected by the repr23esentative academic journals at domestic and foreign. As a result of the two-time analysis, first, abstraction, algorithm, data processing, problem decomposition, and pattern recognition were the core of the study of computational thinking component. Second, research on convergence education centered on computational thinking and science and mathematics subjects was actively conducted. Third, research on computational thinking has been expanding since 2010. Research and development of the classification and definition of computational thinking and components and applying them to education sites should be conducted steadily.

Anomaly Intrusion Detection based on Association Rule Mining in a Database System (데이터베이스 시스템에서 연관 규칙 탐사 기법을 이용한 비정상 행위 탐지)

  • Park, Jeong-Ho;Oh, Sang-Hyun;Lee, Won-Suk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.831-840
    • /
    • 2002
  • Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while tremendous information has been provided to users conveniently Specially, for the security of a database which stores important information such as the private information of a customer or the secret information of a company, several basic suity methods of a database management system itself or conventional misuse detection methods have been used. However, a problem caused by abusing the authority of an internal user such as the drain of secret information is more serious than the breakdown of a system by an external intruder. Therefore, in order to maintain the sorority of a database effectively, an anomaly defection technique is necessary. This paper proposes a method that generates the normal behavior profile of a user from the database log of the user based on an association mining method. For this purpose, the Information of a database log is structured by a semantically organized pattern tree. Consequently, an online transaction of a user is compared with the profile of the user, so that any anomaly can be effectively detected.

Customized Digital TV System for Individuals/Communities based on Data Stream Mining (데이터 스트림 마이닝 기법을 적용한 개인/커뮤니티 맞춤형 Digital TV 시스템)

  • Shin, Se-Jung;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.17D no.6
    • /
    • pp.453-462
    • /
    • 2010
  • The switch from analog to digital broadcast television is extended rapidly. The DTV can offer multiple programming choices, interactive capabilities and so on. Moreover, with the spread of Internet, the information exchange between the communities is increasing, too. These facts lead to the new TV service environment which can offer customized TV programs to personal/community users. This paper proposes a 'Customized Digital TV System for Individuals/Communities based on Data Stream Mining' which can analyze user's pattern of TV watching behavior. Due to the characteristics of TV program data stream and EPG(electronic program guide), the data stream mining methods are employed in the proposed system. When a user is watching DTV, the proposed system can control the surrounding circumstances as using the user behavior profiles. Furthermore, the channel recommendation system on the smart phone environment is proposed to utilize the profiles widely.

Vapor phase synthesis of silicon nitride powder using DC plasma torch (DC 플라즈마 토치를 이용한 질화규소 분말의 기상합성)

  • Hwang, Y.;Sohn, Y.U.;Chung, H.S.;Choi, S.K.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.370-377
    • /
    • 1994
  • DC plasma torch which is a non-transferred type was constructed and silicon nitride powders were produced. Ar gas is used as a plasma gas and gas reactants with the carrier gas are introduced beneath the plasma ignition part. Two slits are attached and a reactive quenching gas is introduced through them. Using $SiCl_4 and NH_3$ as starting materials, silicon nitride powders were produced. As-produced powders were amorphous and crystalline silicon nitrides were obtained by heating at $1420^{\circ}C$ for two hours under nitrogen atmosphere. Silicon nitride phase was identified in the XRD patterns and IR spectrum, and the image of the powders before and after heating was observed from the TEM analysis.

  • PDF

The Behavior Analysis of Exhibition Visitors using Data Mining Technique at the KIDS & EDU EXPO for Children (유아교육 박람회에서 데이터마이닝 기법을 이용한 전시 관람 행동 패턴 분석)

  • Jung, Min-Kyu;Kim, Hyea-Kyeong;Choi, Il-Young;Lee, Kyoung-Jun;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.77-96
    • /
    • 2011
  • An exhibition is defined as market events for specific duration to present exhibitors' main products to business or private visitors, and it plays a key role as effective marketing channels. As the importance of exhibition is getting more and more, domestic exhibition industry has achieved such a great quantitative growth. But, In contrast to the quantitative growth of domestic exhibition industry, the qualitative growth of Exhibition has not achieved competent growth. In order to improve the quality of exhibition, we need to understand the preference or behavior characteristics of visitors and to increase the level of visitors' attention and satisfaction through the understanding of visitors. So, in this paper, we used the observation survey method which is a kind of field research to understand visitors and collect the real data for the analysis of behavior pattern. And this research proposed the following methodology framework consisting of three steps. First step is to select a suitable exhibition to apply for our method. Second step is to implement the observation survey method. And we collect the real data for further analysis. In this paper, we conducted the observation survey method to obtain the real data of the KIDS & EDU EXPO for Children in SETEC. Our methodology was conducted on 160 visitors and 78 booths from November 4th to 6th in 2010. And, the last step is to analyze the record data through observation. In this step, we analyze the feature of exhibition using Demographic Characteristics collected by observation survey method at first. And then we analyze the individual booth features by the records of visited booth. Through the analysis of individual booth features, we can figure out what kind of events attract the attention of visitors and what kind of marketing activities affect the behavior pattern of visitors. But, since previous research considered only individual features influenced by exhibition, the research about the correlation among features is not performed much. So, in this research, additional analysis is carried out to supplement the existing research with data mining techniques. And we analyze the relation among booths using data mining techniques to know behavior patterns of visitors. Among data mining techniques, we make use of two data mining techniques, such as clustering analysis and ARM(Association Rule Mining) analysis. In clustering analysis, we use K-means algorithm to figure out the correlation among booths. Through data mining techniques, we figure out that there are two important features to affect visitors' behavior patterns in exhibition. One is the geographical features of booths. The other is the exhibit contents of booths. Those features are considered when the organizer of exhibition plans next exhibition. Therefore, the results of our analysis are expected to provide guideline to understanding visitors and some valuable insights for the exhibition from the earlier phases of exhibition planning. Also, this research would be a good way to increase the quality of visitor satisfaction. Visitors' movement paths, booth location, and distances between each booth are considered to plan next exhibition in advance. This research was conducted at the KIDS & EDU EXPO for Children in SETEC(Seoul Trade Exhibition & Convention), but it has some constraints to be applied directly to other exhibitions. Also, the results were derived from a limited number of data samples. In order to obtain more accurate and reliable results, it is necessary to conduct more experiments based on larger data samples and exhibitions on a variety of genres.

Algorithm for Extracting the General Web Search Path Pattern (일반적인 웹 검색 경로패턴 추출 알고리즘)

  • Jang, Min-Seok;Ha, Eun-Mi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.771-773
    • /
    • 2005
  • There have been researches about analyzing the information retrieval patterns of log file to efficiently obtain the users' information research patters in web environment. The methods frequently used in their researches is to suggest the algorithms by which the frequent one is derived from the path traversal patterns in efficient way. But one of their general problems is not to provide the proper solution in case of complex, that is, general topological patterns. Therefore this paper tries to suggest a efficient algorithm after defining the general information retrieval pattern.

  • PDF

Forecasting Electric Power Demand Using Census Information and Electric Power Load (센서스 정보 및 전력 부하를 활용한 전력 수요 예측)

  • Lee, Heon Gyu;Shin, Yong Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.3
    • /
    • pp.35-46
    • /
    • 2013
  • In order to develop an accurate analytical model for domestic electricity demand forecasting, we propose a prediction method of the electric power demand pattern by combining SMO classification techniques and a dimension reduction conceptualized subspace clustering techniques suitable for high-dimensional data cluster analysis. In terms of electricity demand pattern prediction, hourly electricity load patterns and the demographic and geographic characteristics can be analyzed by integrating the wireless load monitoring data as well as sub-regional unit of census information. There are composed of a total of 18 characteristics clusters in the prediction result for the sub-regional demand pattern by using census information and power load of Seoul metropolitan area. The power demand pattern prediction accuracy was approximately 85%.

Metalevel Data Mining through Multiple Classifier Fusion (다수 분류기를 이용한 메타레벨 데이터마이닝)

  • 김형관;신성우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.551-553
    • /
    • 1999
  • This paper explores the utility of a new classifier fusion approach to discrimination. Multiple classifier fusion, a popular approach in the field of pattern recognition, uses estimates of each individual classifier's local accuracy on training data sets. In this paper we investigate the effectiveness of fusion methods compared to individual algorithms, including the artificial neural network and k-nearest neighbor techniques. Moreover, we propose an efficient meta-classifier architecture based on an approximation of the posterior Bayes probabilities for learning the oracle.

  • PDF