• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.033 seconds

An Extended Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (빈발 순회패턴 탐사에 기반한 확장된 동적 웹페이지 추천 알고리즘)

  • Lee KeunSoo;Lee Chang Hoon;Yoon Sun-Hee;Lee Sang Moon;Seo Jeong Min
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1163-1176
    • /
    • 2005
  • The Web is the largest distributed information space but, the individual's capacity to read and digest contents is essentially fixed. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent K-Pagesets. We extend a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. We add a WebPR(A) algorithm into a family of WebPR algorithms, and propose a new winWebPR(T) algorithm introducing a window concept on WebPR(T). Including two extended algorithms, our experimentation with two real data sets, including LadyAsiana and KBS media server site, clearly validates that our method outperforms conventional methods.

  • PDF

Discovering Temporal Relation Rules from Temporal Interval Data (시간간격을 고려한 시간관계 규칙 탐사 기법)

  • Lee, Yong-Joon;Seo, Sung-Bo;Ryu, Keun-Ho;Kim, Hye-Kyu
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • Data mining refers to a set of techniques for discovering implicit and useful knowledge from large database. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering knowledge from temporal database, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treat problems for discovering temporal pattern from data which are stamped with time points and do not consider problems for discovering knowledge from temporal interval data. For example, there are many examples of temporal interval data that it can discover useful knowledge from. These include patient histories, purchaser histories, web log, and so on. Allen introduces relationships between intervals and operators for reasoning about relations between intervals. We present a new data mining technique that can discover temporal relation rules in temporal interval data by using the Allen's theory. In this paper, we present two new algorithms for discovering algorithm for generating temporal relation rules, discovers rules from temporal interval data. This technique can discover more useful knowledge in compared with conventional data mining techniques.

  • PDF

Mining Frequent Itemsets using Time Unit Grouping (시간 단위 그룹핑을 이용한 빈발 아이템셋 마이닝)

  • Hwang, Jeong Hee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.647-653
    • /
    • 2022
  • Data mining is a technique that explores knowledge such as relationships and patterns between data by exploring and analyzing data. Data that occurs in the real world includes a temporal attribute. Temporal data mining research to find useful knowledge from data with temporal properties can be effectively utilized for predictive judgment that can predict the future. In this paper, we propose an algorithm using time-unit grouping to classify the database into regular time period units and discover frequent pattern itemsets in time units. The proposed algorithm organizes the transaction and items included in the time unit into a matrix, and discovers frequent items in the time unit through grouping. In the experimental results for the performance evaluation, it was found that the execution time was 1.2 times that of the existing algorithm, but more than twice the frequent pattern itemsets were discovered.

A New Association Rule Mining based on Coverage and Exclusion for Network Intrusion Detection (네트워크 침입 탐지를 위한 Coverage와 Exclusion 기반의 새로운 연관 규칙 마이닝)

  • Tae Yeon Kim;KyungHyun Han;Seong Oun Hwang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 2023
  • Applying various association rule mining algorithms to the network intrusion detection task involves two critical issues: too large size of generated rule set which is hard to be utilized for IoT systems and hardness of control of false negative/positive rates. In this research, we propose an association rule mining algorithm based on the newly defined measures called coverage and exclusion. Coverage shows how frequently a pattern is discovered among the transactions of a class and exclusion does how frequently a pattern is not discovered in the transactions of the other classes. We compare our algorithm experimentally with the Apriori algorithm which is the most famous algorithm using the public dataset called KDDcup99. Compared to Apriori, the proposed algorithm reduces the resulting rule set size by up to 93.2 percent while keeping accuracy completely. The proposed algorithm also controls perfectly the false negative/positive rates of the generated rules by parameters. Therefore, network analysts can effectively apply the proposed association rule mining to the network intrusion detection task by solving two issues.

Environmental Consciousness Data Modeling by Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.529-538
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a riven large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF

Analyzing Repair Processes Using Process Mining : A Case Study (프로세스 마이닝을 활용한 제품 수리 프로세스 분석 사례연구)

  • Yang, Hanna;Song, Minseok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.86-96
    • /
    • 2015
  • A lot of research works in the BPM area focuses on the development of new techniques in process mining. Even though the application of process mining to analyze real life process logs is important, only few case studies are available. Thus, in this paper, we conduct a case study on how to analyze a real life process log which comes from a Korean company in the heavy industry area. We analyze a customer service process that consists of a series of activities to enhance the level of customer satisfaction. In this case study, five research questions are derived based on collected questions from the company. Then we focus on bottleneck analysis, basic performance analysis and pattern analysis that are selected in order to answer the research questions. The analysis shows some abnormal behaviors in the process and possible ways to improve current processes are suggested.

Intelligent Marketing and Merchandising Techniques for an Internet Shopping Mall (인터넷 쇼핑몰에서의 지능화된 마케팅과 상품화 계획 기법)

  • Ha, Sung-Ho;Park, Sang-Chan
    • Asia pacific journal of information systems
    • /
    • v.12 no.3
    • /
    • pp.71-88
    • /
    • 2002
  • In this paper, intelligent marketing and merchandising methods utilizing data mining and Web mining techniques are proposed for online retailers to survive and succeed in gaining competitive advantage in a highly competitive environment. The first part of this paper explains the procedures of one-to-one marketing based on customer relationship management(CRM) techniques and personalized recommendation lists generation. The second part illustrates Web merchandising methods utilizing data mining techniques, such as association and sequential pattern mining. We expect that our Web marketing and merchandising methods will both provide a currently operating Internet shopping mall with more selling opportunities and give more useful product information to customers.

Environmental Consciousness Data Modeling by Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-124
    • /
    • 2004
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF

An Efficient Migration Strategy of Mobile Agents for Data Mining (데이터 마이닝을 위한 이동 에이전트의 효율적인 이주 전략)

  • Kwon, Hyeok-Chan;Yoo, Woo-Jong;Kim, Heung-Hwan;Yoo, Kwan-Jong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1511-1519
    • /
    • 2000
  • Inthis paper, we present an efficient migration strategy of mobile agent for data mining application. The purpose of the proposed algorithm is to set up the best migration plan of mobile agent with regard to minimizing network execution time .In order to verify the effectiveness of the proposed algorithm, we designed a performance evaulation model for three paradigms from data mining, i.e. RPC, mobile agent and mobile agent with locker pattern, and we then evaluated the algorithm by simulation.

  • PDF

RFM based Incremental Frequent Patterns mining Method for Recommendation in e-Commerce (전자상거래 추천을 위한 RFM기반의 점진적 빈발 패턴 마이닝 기법)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.135-137
    • /
    • 2012
  • A existing recommedation system using association rules has the problem, which is suffered from inefficiency by reprocessing of the data which have already been processed in the incremental data environment in which new data are added persistently. We propose the recommendation technique using incremental frequent pattern mining based on RFM in e-commerce. The proposed can extract frequent items and create association rules using frequent patterns mining rapidly when new data are added persistently.

  • PDF