• Title/Summary/Keyword: Pattern classifier

Search Result 382, Processing Time 0.024 seconds

Design of Fuzzy Pattern Classifier based on Extreme Learning Machine (Extreme Learning Machine 기반 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Sok-Beom;Hwang, Kuk-Yeon;Wang, Jihong;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.509-514
    • /
    • 2015
  • In this paper, we introduce a new pattern classifier which is based on the learning algorithm of Extreme Learning Machine the sort of artificial neural networks and fuzzy set theory which is well known as being robust to noise. The learning algorithm used in Extreme Learning Machine is faster than the conventional artificial neural networks. The key advantage of Extreme Learning Machine is the generalization ability for regression problem and classification problem. In order to evaluate the classification ability of the proposed pattern classifier, we make experiments with several machine learning data sets.

A Tow-stage Recognition Approach Based on Error Pattern Hypotheses for Connected Digit Recognition

  • Oh, Wook-Kwon;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.31-36
    • /
    • 1996
  • In this paper, a two-stage recognition approach based on error pattern hypotheses is proposed to reduce errors of a connected digit recognizer. In the approach, a conventional recognizer is first used to produce N-best candidate strings, and then error patterns are hypothesized by examining the candidate strings. For substitution error pattern hypotheses, error-pattern-dependent classifiers having more discriminative power than the first-stage classifier are used ; and for insertion and deletion errors, word duration and energy contour information are exploited are exploited to discriminated confusing pairs. Simulation results showed that the proposed approach achieves 15% decrease in word error rate for speaker-independent Korean connected digit recognition when a hidden Markov model-based recognizer is used for the first-stage classifier.

  • PDF

Design of Hybrid Unsupervised-Supervised Classifier for Automatic Emotion Recognition (자동 감성 인식을 위한 비교사-교사 분류기의 복합 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1294-1299
    • /
    • 2014
  • The emotion is deeply affected by human behavior and cognitive process, so it is important to do research about the emotion. However, the emotion is ambiguous to clarify because of different ways of life pattern depending on each individual characteristics. To solve this problem, we use not only physiological signal for objective analysis but also hybrid unsupervised-supervised learning classifier for automatic emotion detection. The hybrid emotion classifier is composed of K-means, genetic algorithm and support vector machine. We acquire four different kinds of physiological signal including electroencephalography(EEG), electrocardiography(ECG), galvanic skin response(GSR) and skin temperature(SKT) as well as we use 15 features extracted to be used for hybrid emotion classifier. As a result, hybrid emotion classifier(80.6%) shows better performance than SVM(31.3%).

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.

Data Correction For Enhancing Classification Accuracy By Unknown Deep Neural Network Classifiers

  • Kwon, Hyun;Yoon, Hyunsoo;Choi, Daeseon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3243-3257
    • /
    • 2021
  • Deep neural networks provide excellent performance in pattern recognition, audio classification, and image recognition. It is important that they accurately recognize input data, particularly when they are used in autonomous vehicles or for medical services. In this study, we propose a data correction method for increasing the accuracy of an unknown classifier by modifying the input data without changing the classifier. This method modifies the input data slightly so that the unknown classifier will correctly recognize the input data. It is an ensemble method that has the characteristic of transferability to an unknown classifier by generating corrected data that are correctly recognized by several classifiers that are known in advance. We tested our method using MNIST and CIFAR-10 as experimental data. The experimental results exhibit that the accuracy of the unknown classifier is a 100% correct recognition rate owing to the data correction generated by the proposed method, which minimizes data distortion to maintain the data's recognizability by humans.

Music Genre Classification using Time Delay Neural Network (시간 지연 신경망을 이용한 음악 장르 분류)

  • 이재원;조찬윤;김상균
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.414-422
    • /
    • 2001
  • This paper proposes a classifier of music genre using time delay neural network(TDNN) fur an audio data retrieval systems. The classifier considers eight kinds of genres such as Blues, Country, Hard Core, Hard Rock, Jazz, R&B(Soul), Techno and Trash Metal. The comparative unit to classify the genres is a melody between bars. The melody pattern is extracted based un snare drum sound which represents the periodicity of rhythm effectively. The classifier is constructed with the TDNN and uses fourier transformed feature vector of the melody as input pattern. We experimented the classifier on eighty training data from ten musics for each genres and forty test data from five musics for each genres, and obtained correct classification rates of 92.5% and 60%, respectively.

  • PDF

DIAGNOSING CARDIOVASCULAR DISEASE FROM HRV DATA USING FP-BASED BAYESIAN CLASSIFIER

  • Lee, Heon-Gyu;Lee, Bum-Ju;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.868-871
    • /
    • 2006
  • Mortality of domestic people from cardiovascular disease ranked second, which followed that of from cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.

  • PDF

Kernel Pattern Recognition using K-means Clustering Method (K-평균 군집방법을 이요한 가중커널분류기)

  • 백장선;심정욱
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.447-455
    • /
    • 2000
  • We propose a weighted kernel pattern recognition method using the K -means clustering algorithm to reduce computation and storage required for the full kernel classifier. This technique finds a set of reference vectors and weights which are used to approximate the kernel classifier. Since the hierarchical clustering method implemented in the 'Weighted Parzen Window (WP\V) classifier is not able to rearrange the proper clusters, we adopt the K -means algorithm to find reference vectors and weights from the more properly rearranged clusters \Ve find that the proposed method outperforms the \VP\V method for the repre~entativeness of the reference vectors and the data reduction.

  • PDF

Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier (HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현)

  • Kim, Jin-Yul;Park, Chan-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.

Design of Robust Face Recognition Pattern Classifier Using Interval Type-2 RBF Neural Networks Based on Census Transform Method (Interval Type-2 RBF 신경회로망 기반 CT 기법을 이용한 강인한 얼굴인식 패턴 분류기 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.755-765
    • /
    • 2015
  • This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.