• Title/Summary/Keyword: Pattern Accuracy

Search Result 1,346, Processing Time 0.029 seconds

Accuracy Improvement of Screen Printed Ag Paste Patterns on Anodized Al for Electroless Ni Plating (무전해 Ni 도금을 위한 양극 산화막위에 스크린 인쇄된 Ag 페이스트 패턴의 정밀도 개선)

  • Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.397-402
    • /
    • 2017
  • We used an etching process to control the line-width of screen printed Ag paste patterns. Ag paste was printed on anodized Al substrate to produce a high power LED. In general, Ag paste spreads or diffuses on anodized Al substrate in the process of screen printing; therefore, the line-width of the printed Ag paste pattern increases in contrast with the ideal line-width of the pattern. Smudges of Ag paste on anodized Al substrate were removed by neutral etching process without surface damage of the anodized Al substrate. Accordingly, the line-width of the printed Ag paste pattern was controlled as close as possible to the ideal line-width. When the etched Ag paste pattern was used as a seed layer for electroless Ni plating, the line width of the plated Ni film was similar to the line-width of the etched Ag paste pattern. Finally, in pattern formation by Ag paste screen printing, we found that the accuracy of the line-width of the pattern can be effectively improved by using an etching process before electroless Ni plating.

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

3D Modelling of Moblie Part Using OPTO- Top Pattern Scanner (OPTO-Top패턴주사기에 의한 자동차부품의 3차원모델링)

  • 한승희;오원진;배연성
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.291-298
    • /
    • 2004
  • Effective 3 dimensional modelling is to be essential work for design of construction, mechanic and industrial part. Especially, it makes possible for reverse design. It need rapidity, accuracy, reality. Data acquisition method for modelling are contact 3dimensional measurement system, LASER scanner, Pattern scanner, and digital photogrammetry. This study introduce to 3 dimensional modelling methods and analysis of these method. We tried to 3D modelling of automobile part using OPTO-Top pattern scanner which system have rapidity and accuracy, and compared effectiveness of each method. The 3D display web environment was made.

  • PDF

A Hybrid Data Mining Technique Using Error Pattern Modeling (오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

Fast Template Matching for the Recognition of Hand Vascular Pattern (정맥패턴인식을 위한 고속 원형정합)

  • Choi, Kwang-Wook;Choi, Hwan-Soo;Pyo, Kwang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.532-535
    • /
    • 2003
  • In this paper, we propose a new algorithm that can enhance the speed of template matching of hand vascular pattern person verification or recognition system. Various template matching algorithms have advantages in the matching accuracy, but most of the algorithms suffer from computational burden. To reduce the computational amount, with accuracy maintained, we propose following template matching scenario as follows. firstly, original hand vascular image is re-sampled in order to reduce spatial resolution. Secondly, reconstructed image is projected to vertical and horizontal direction, being converted to two one dimensional (1D) data. Thirdly, converted data is used to estimate spatial discrepancy between stored template image and target image. Finally, matching begins from where the estimated order is highest, and finishes when matching decision function is computed to be over certain threshold. We've applied the proposed algorithm to hand vascular pattern identification application for biometrics, and observed dramatic matching speed enhancement. This paper presents detailed explanation of the proposed algorithm and evaluation results.

  • PDF

Experimental study on human arm motions in positioning

  • Shibata, S.;Ohba, K.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, characteristics of the motions of a human arm are investigated experimentally. When the conditions of the target point are restricted, human adjusts its trajectory and velocity pattern of the arm to fit the conditions skillfully. The purpose of this work is to examine the characteristics of the trajectory, velocity pattern, and the size of the duration in the following cases. First, we examine the case of point-to-point motion. The results are consistent with the minimum jerk theory. However, individual differences in the length of the duration can be observed in the experiment. Second, we examine the case which requires accuracy of positioning at the target point. It is found that the velocity pattern differs from the bell shaped pattern explained by the minimum jerk theory, and has its peak in the first half of the duration. When higher accuracy of the positioning is required, learning effects can be observed. Finally, to examine the case which requires constraint of the arm posture at the target point, we conduct experiments of a human trying to grasp a cup. It is considered that this motion consists of two steps : one is the positioning motion of the person in order to start the grasping motion, the other is the grasping motion of the human's hand approaching toward the cup and grasping it. In addition, two representative velocity patterns are observed : one is the similar velocity pattern explained in the above experiment, the other is the velocity pattern which has its relative maximum in the latter half of the duration.

  • PDF

Eye Pattern Detection Using SVD and HMM Technique from CCD Camera Face Image (CCD 카메라 얼굴 영상에서의 SVD 및 HMM 기법에 의한 눈 패턴 검출)

  • Jin, Kyung-Chan;Miche, Pierre;Park, Il-Yong;Sohn, Byung-Gi;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.63-68
    • /
    • 1999
  • We proposed a method of eye pattern detection in the 2-D image which was obtained by CCD video camera. To detect face region and eye pattern, we proposed pattern search network and batch SVD algorithm which had the statistical equivalence of PCA. We also used HMM to improve the accuracy of detection. As a result, we acknowledged that the proposed algorithm was superior to PCA pattern detection algorithm in computational cost and accuracy of defection. Furthermore, we evaluated that the proposed algorithm was possible in real-time face pattern detection with 2 frame images per second.

  • PDF

A Study on the Optimal Trading Frequency Pattern and Forecasting Timing in Real Time Stock Trading Using Deep Learning: Focused on KOSDAQ (딥러닝을 활용한 실시간 주식거래에서의 매매 빈도 패턴과 예측 시점에 관한 연구: KOSDAQ 시장을 중심으로)

  • Song, Hyun-Jung;Lee, Suk-Jun
    • The Journal of Information Systems
    • /
    • v.27 no.3
    • /
    • pp.123-140
    • /
    • 2018
  • Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Adaptive Weight Collaborative Complementary Learning for Robust Visual Tracking

  • Wang, Benxuan;Kong, Jun;Jiang, Min;Shen, Jianyu;Liu, Tianshan;Gu, Xiaofeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.305-326
    • /
    • 2019
  • Discriminative correlation filter (DCF) based tracking algorithms have recently shown impressive performance on benchmark datasets. However, amount of recent researches are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we intend to solve these problems and handle the contradiction between accuracy and real-time in the framework of tracking-by-detection. Firstly, we propose an innovative strategy to combine the template and color-based models instead of a simple linear superposition and rely on the strengths of both to promote the accuracy. Secondly, to enhance the discriminative power of the learned template model, the spatial regularization is introduced in the learning stage to penalize the objective boundary information corresponding to features in the background. Thirdly, we utilize a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, we research strategies to limit the computational complexity of our tracker. Abundant experiments demonstrate that our tracker performs superiorly against several advanced algorithms on both the OTB2013 and OTB2015 datasets while maintaining the high frame rates.