• 제목/요약/키워드: Patients' radiation dose

검색결과 1,481건 처리시간 0.028초

Reduced-dose whole-brain radiotherapy with tumor bed boost after upfront high-dose methotrexate for primary central nervous system lymphoma

  • Lee, Tae Hoon;Lee, Joo Ho;Chang, Ji Hyun;Ye, Sung-Joon;Kim, Tae Min;Park, Chul-Kee;Kim, Il Han;Kim, Byoung Hyuck;Wee, Chan Woo
    • Radiation Oncology Journal
    • /
    • 제38권1호
    • /
    • pp.35-43
    • /
    • 2020
  • Purpose: This retrospective study compares higher-dose whole-brain radiotherapy (hdWBRT) with reduced-dose WBRT (rdWBRT) in terms of clinical efficacy and toxicity profile in patients treated for primary central nervous system lymphoma (PCNSL). Materials and Methods: Radiotherapy followed by high-dose methotrexate (HD-MTX)-based chemotherapy was administered to immunocompetent patients with histologically confirmed PCNSL between 2000 and 2016. Response to chemotherapy was taken into account when prescribing the radiation dose to the whole brain and primary tumor bed. The whole brain dose was ≤23.4 Gy for rdWBRT (n = 20) and >23.4 Gy for hdWBRT (n = 68). Patients manifesting cognitive disturbance, memory impairment and dysarthria were considered to have neurotoxicity. A median follow-up was 3.62 years. Results: The 3-year overall survival (OS) and progression-free survival (PFS) were 70.0% and 48.9% with rdWBRT, and 63.2% and 43.2% with hdWBRT. The 3-year OS and PFS among patients with partial response (n = 45) after chemotherapy were 77.8% and 53.3% with rdWBRT, and 58.3% and 45.8% with hdWBRT (p > 0.05). Among patients with complete response achieved during follow-up, the 3-year freedom from neurotoxicity (FFNT) rate was 94.1% with rdWBRT and 62.4% with hdWBRT. Among patients aged ≥60 years, the 3-year FFNT rate was 87.5% with rdWBRT and 39.1% with hdWBRT (p = 0.49). Neurotoxicity was not observed after rdWBRT in patients aged below 60 years. Conclusion: rdWBRT with tumor bed boost combined with upfront HD-MTX is less neurotoxic and results in effective survival as higher-dose radiotherapy even in partial response after chemotherapy.

Impact of radiation dose on concurrent chemoradiotherapy for limited-stage small-cell lung cancer

  • Park, Junhee;Kang, Min Kyu
    • Radiation Oncology Journal
    • /
    • 제36권1호
    • /
    • pp.35-44
    • /
    • 2018
  • Purpose: To evaluate clinical outcomes according to radiation dose in patients with limited-stage small-cell lung cancer (LS-SCLC) treated with concurrent chemoradiotherapy (CCRT). Materials and Methods: From January 2006 to December 2015, 38 patients with LS-SCLC were treated with CCRT with etoposide and cisplatin. Total radiation doses ranged from 45 Gy to 66 Gy (1.8-2 Gy/fraction) and were classified into three groups: 45-54 Gy, 60-63 Gy, and 66 Gy. The impact of radiation dose on survival outcomes were evaluated. Toxicities were evaluated according to the Common Terminology Criteria for Adverse Events version 4.03. Results: The median follow-up period was 21 months. The 2-year overall survival (OS) and local failure-free survival (LFFS) rates were 45.8% and 67.5%, respectively. The 2-year LFFS rates were 33.3% for 45-54 Gy group, 68.6% for 60-63 Gy group, and 87.1% for 66 Gy group (p = 0.014). In multivariate analysis, radiation dose was a significant factor for LFFS (p = 0.015). Although radiation dose was not a significant factor for OS and disease-free survival (DFS) in multivariate analysis, both OS and DFS of 66 Gy group tended to be better than that of 45-63 Gy group in univariate analysis. However, there were no differences in severe toxicities among three groups. Conclusion: Higher radiation dose achieved better local control in patients with LS-SCLC treated with CCRT. In addition, a total dose of 66 Gy tended to improve OS and DFS.

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Kim, Dong Wook
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1571-1576
    • /
    • 2018
  • We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).

Interfraction variation and dosimetric changes during image-guided radiation therapy in prostate cancer patients

  • Fuchs, Frederik;Habl, Gregor;Devecka, Michal;Kampfer, Severin;Combs, Stephanie E.;Kessel, Kerstin A.
    • Radiation Oncology Journal
    • /
    • 제37권2호
    • /
    • pp.127-133
    • /
    • 2019
  • Purpose: The aim of this study was to identify volume changes and dose variations of rectum and bladder during radiation therapy in prostate cancer (PC) patients. Materials and Methods: We analyzed 20 patients with PC treated with helical tomotherapy. Daily image guidance was performed. We re-contoured the entire bladder and rectum including its contents as well as the organ walls on megavoltage computed tomography once a week. Dose variations were analyzed by means of Dmedian, Dmean, Dmax, V10 to V75, as well as the organs at risk (OAR) volume. Further, we investigated the correlation between volume changes and changes in Dmean of OAR. Results: During treatment, the rectal volume ranged from 62% to 223% of its initial volume, the bladder volume from 22% to 375%. The average Dmean ranged from 87% to 118% for the rectum and 58% to 160% for the bladder. The Pearson correlation coefficients between volume changes and corresponding changes in Dmean were -0.82 for the bladder and 0.52 for the rectum. The comparison of the dose wall histogram (DWH) and the dose volume histogram (DVH) showed that the DVH underestimates the percentage of the rectal and bladder volume exposed to the high dose region. Conclusion: Relevant variations in the volume of OAR and corresponding dose variations can be observed. For the bladder, an increase in the volume generally leads to lower doses; for the rectum, the correlation is weaker. Having demonstrated remarkable differences in the dose distribution of the DWH and the DVH, the use of DWHs should be considered.

Is neoadjuvant androgen deprivation therapy beneficial in prostate cancer treated with definitive radiotherapy?

  • Eom, Keun-Yong;Ha, Sung W.;Lee, Eunsik;Kwak, Cheol;Lee, Sang Eun
    • Radiation Oncology Journal
    • /
    • 제32권4호
    • /
    • pp.247-255
    • /
    • 2014
  • Purpose: To determine whether neoadjuvant androgen deprivation therapy (NADT) improves clinical outcomes in patients with prostate cancer treated with definitive radiotherapy. Materials and Methods: We retrospectively reviewed medical records of 201 patients with prostate cancer treated with radiotherapy between January 1991 and December 2008. Of these, 156 patients with more than 3 years of follow-up were the subjects of this study. The median duration of follow-up was 91.2 months. NADT was given in 103 patients (66%) with median duration of 3.3 months (range, 1.0 to 7.7 months). Radiation dose was escalated gradually from 64 Gy to 81 Gy using intensity-modulated radiotherapy technique. Results: Biochemical relapse-free survival (BCRFS) and overall survival (OS) of all patients were 72.6% and 90.7% at 5 years, respectively. BCRFS and OS of NADT group were 79.5% and 89.8% at 5 years and those of radiotherapy alone group were 58.8% and 92.3% at 5 years, respectively. Risk group (p = 0.010) and radiation dose ${\geq}70Gy$ (p = 0.017) affected BCRFS independently. NADT was a significant prognostic factor in univariate analysis, but not in multivariate analysis (p = 0.073). Radiation dose ${\geq}70Gy$ was only an independent factor for OS (p = 0.007; hazard ratio, 0.261; 95% confidence interval, 0.071-0.963). Conclusion: NADT prior to definitive radiotherapy did not result in significant benefit in terms of BCRFS and OS. NADT should not be performed routinely in the era of dose-escalated radiotherapy.

Optimal dose and volume for postoperative radiotherapy in brain oligometastases from lung cancer: a retrospective study

  • Chung, Seung Yeun;Chang, Jong Hee;Kim, Hye Ryun;Cho, Byoung Chul;Lee, Chang Geol;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • 제35권2호
    • /
    • pp.153-162
    • /
    • 2017
  • Purpose: To evaluate intracranial control after surgical resection according to the adjuvant treatment received in order to assess the optimal radiotherapy (RT) dose and volume. Materials and Methods: Between 2003 and 2015, a total of 53 patients with brain oligometastases from non-small cell lung cancer (NSCLC) underwent metastasectomy. The patients were divided into three groups according to the adjuvant treatment received: whole brain radiotherapy (WBRT) ${\pm}$ boost (WBRT ${\pm}$ boost group, n = 26), local RT/Gamma Knife surgery (local RT group, n = 14), and the observation group (n = 13). The most commonly used dose schedule was WBRT (25 Gy in 10 fractions, equivalent dose in 2 Gy fractions [EQD2] 26.04 Gy) with tumor bed boost (15 Gy in 5 fractions, EQD2 16.25 Gy). Results: The WBRT ${\pm}$ boost group showed the lowest 1-year intracranial recurrence rate of 30.4%, followed by the local RT and observation groups, at 66.7%, and 76.9%, respectively (p = 0.006). In the WBRT ${\pm}$ boost group, there was no significant increase in the 1-year new site recurrence rate of patients receiving a lower dose of WBRT (EQD2) <27 Gy compared to that in patients receiving a higher WBRT dose (p = 0.553). The 1-year initial tumor site recurrence rate was lower in patients receiving tumor bed dose (EQD2) of ${\geq}42.3Gy$ compared to those receiving <42.3 Gy, although the difference was not significant (p = 0.347). Conclusions: Adding WBRT after resection of brain oligometastases from NSCLC seems to enhance intracranial control. Furthermore, combining lower-dose WBRT with a tumor bed boost may be an attractive option.

핵의학과에서 방사선 피폭관리 실태에 대한 조사 연구 (A Study on the Radiation Dose Managements in the Nuclear Medicine Department)

  • 임창선;김세헌
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1760-1765
    • /
    • 2009
  • 의료기관 핵의학과에서는 진단과 치료를 목적으로 방사성동위원소를 사용하므로 누구나 방사선피폭에 노출 될 위험이 있다. 일반적으로 방사선 작업종사자에 대한 피폭관리는 비교적 철저히 이루어지고 있으나 환자보호자 및 일반인에 대한 피폭관리는 소홀한 경향이 있다. 특히 방사성의약품을 투여한 환자들은 잠재적 선원이 되어 작업종사자외에 환자보호자 및 일반인에 대해 방사선피폭을 초래하므로 이로 인한 방사선피폭을 최소한으로 감소시킬 수 있도록 관리되어야 한다. 따라서 핵의학과 방사선피폭에 대한 관리실태를 파악하기 위하여 전국에 있는 대학병원 중 7개소에 대해 조사한 결과 환자이송요원, 환경미화원 등 수시출입자에 대해서 2 개소의 의료기관에서는 피폭선량평가 및 관리와 안전교육이 없었다. 또한 환자와 동행하는 보호자에 대한 통제와 관리는 7 개소 모두 허술하였는데 대기실에서 검사직전 환자로부터 흡수될 수 있는 평균 방사선량률은 25.60 ${\mu}$Sv/h로서 일반인에 대해 연간 선량한도를 초과하지 아니하는 범위 내에서 허용되는 20 ${\mu}$Sv/h를 초과하였다. 따라서 비록 아주 적은 피폭선량이 예상된다고 하더라도 수시출입자에 대한 철저한 피폭선량의 관리와 교육이 요구되며, 환자보호자 등을 보호하기 위해 환자와 가까이 하는 것을 통제하거나 환자를 격리할 필요가 있었다.

PET-CT 검사 환자의 외부 방사선량률 변화 (Changes in External Radiation Dose Rate for PET-CT Test Patients)

  • 김수진;한은옥
    • Journal of Radiation Protection and Research
    • /
    • 제37권2호
    • /
    • pp.103-107
    • /
    • 2012
  • PET-CT 검사 환자의 피폭선량 감소를 위한 기초자료 제공의 일환으로 PET-CT 검사 환자의 방사선량률의 변화를 분석하고자 하였다. PET-CT 검사 환자의 방사선량률을 측정한 결과 이론과 같이 방사성의약품이 투여된 환자로부터 거리가 멀수록, 시간이 지날수록 방사선량률은 감소되는 것을 볼 수 있었다. 특히 신체부위에 따라서는 방사성의약품 정맥 주사 즉시인 약 4.17분에서는 흉부, PET-CT 검사 전 배뇨 후인 약 77.47분 이후부터는 두부가 가장 높게 나타났다. 일반화되어 있는 정보와 같이 PET-CT 검사 환자로부터 받는 방사선 피폭량을 감소시키기 위해서는 보호자나 방사선작업종사자가 환자로부터 거리를 멀리하거나 방사능이 감소된 이후의 시간부터 접촉하는 것이 바람직하다. 불가피한 접촉이 필요하다면 가능한 거리는 200 cm이상을 확보하는 것이 바람직하다. 또한 초기에는 흉부, 방사성의약품 투여 후 약 77분 이후부터는 두부에 방사선량률이 높기 때문에 환자 신체적 특징을 고려한 접촉도 함께 이루어진다면 최적화 달성에 도움이 될 것이라고 보여 진다. 본 연구에서 도출된 PET-CT 검사 환자의 거리, 시간, 신체부위에 따른 방사선량률 변화를 알 수 있다는 점에서 연구에 의의가 있다고 본다. 향후 연구에서는 본 연구에서 도출된 결과를 바탕으로 환자 개인특성에 따른 방사선량률의 변화 차이를 분석하여 환자, 보호자, 종사자의 피폭선량 감소에 활용할 수 있도록 지속적인 연구가 수행되는 것이 필요하다고 본다.

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

저선량 핵의학 감마카메라 영상장치의 최근 발전 (Recent Development in Low Dose Nuclear Medicine Gamma Camera Imaging)

  • 황경훈;이병일;김용권;이해준;선용한
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권4호
    • /
    • pp.123-127
    • /
    • 2015
  • Recently, new gamma camera systems enabling low radiation dose imaging have been developed. We reviewed the recent development of these low dose gamma camera systems including high sensitivity detectors, device structures, noise reduction filters, efficient image reconstruction algorithms, low dose protocols, and so on. It is expected that further technological advances reduce both radiation dose and imaging time in gamma camera imaging especially for radiation-sensitive patients such as pediatric patients.