DOI QR코드

DOI QR Code

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon (Department of Bio-Convergence Engineering, Korea University) ;
  • Yoon, Myonggeun (Department of Bio-Convergence Engineering, Korea University) ;
  • Chung, Weon Kuu (Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong) ;
  • Chung, Mijoo (Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong) ;
  • Kim, Dong Wook (Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong)
  • Received : 2018.04.19
  • Published : 2018.11.30

Abstract

We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).

Keywords

Acknowledgement

Supported by : Korea Radiation Safety Foundation (KORSAFe)

References

  1. P. J. Hoskin, Lancet Oncol. 1, 74 (2000). https://doi.org/10.1016/S1470-2045(00)00074-7
  2. B. S. Teh, S. Y. Woo and E. B. Butler, Oncologist 4, 433 (1999).
  3. J. Vaarkamp and M. Krasin, Int. J. Radiat. Oncol. Biol. Phys. 49, 1518 (2001). https://doi.org/10.1016/S0360-3016(00)01538-8
  4. H. K. Malhotra, S. Raina, J. S. Avadhani, S. de Boer and M. B. Podgorsak, J. Appl. Clin. Med. Phys. 6, 77 (2005). https://doi.org/10.1120/jacmp.v6i4.2129
  5. O. Christian, H. Patric, J. Martin, G. Reinhard and V. Dirk, Radiat. Oncol. J. 34, 313 (2016). https://doi.org/10.3857/roj.2016.01935
  6. R. Boellaard, M. Essers, M. Van Herk and B. J. Mijnheer, Int. J. Radiat. Oncol Biol. Phys. 41, 465 (1998). https://doi.org/10.1016/S0360-3016(98)00048-0
  7. P. Francois, P. Boissard, L. Berger and A. Mazal, Phys. Med. 27, 1 (2011). https://doi.org/10.1016/j.ejmp.2010.06.002
  8. R. Boqaerts, A. Van Esch, R. Reymen and D. Huyskens, Radiother. Oncol. 54, 39 (2000). https://doi.org/10.1016/S0167-8140(99)00165-6
  9. A. Piermattei et al., Phys. Med. 21, 143 (2005). https://doi.org/10.1016/S1120-1797(05)80003-1
  10. A. Piermattei, A. Fidanzio, L. Azario, L. Grimaldi, G. d'Onofrio and S. Cilla, Phys. Med. Biol. 52, 5101 (2007). https://doi.org/10.1088/0031-9155/52/16/026
  11. L. Grimaldi, G. d'Onofrio, S. Cilla, A. Fidanzio, G. Stimato and L. Azario, Med. Phys. 34, 1121 (2007). https://doi.org/10.1118/1.2426401
  12. S. Jeong, M. Yoon, D. W. Kim, W. K. Chung and M. Chung, J. Korean Phys. Soc. 70, 948 (2017). https://doi.org/10.3938/jkps.70.948
  13. E. Piesch, B. Burgkhardt and M. Vilgis, Radiat. Prot. Dosim. 33, 215 (1990). https://doi.org/10.1093/rpd/33.1-4.215
  14. Corporation ATG, RPL glass dosimeter / Small element system Dose Ace (2000).
  15. Chiyoda Technology Corporation, Personal monitoring system by glass badge (2003).
  16. S. M. Hus, S. H. Yeh, M. S. Lin and W. L. Chen, Radiat. Prot. Dosim. 199, 327 (2006).
  17. F. Araki, N. Moribe, T. Shimonobou and Y. Yamashita, Med. Phys. 31, 1980 (2004). https://doi.org/10.1118/1.1758351
  18. P. A. Jursinic, Med. Phys. 34, 1690 (2007).
  19. P. Allen and S. W. S. McKeveer, Radiat. Prot. Dosim. 33, 19 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080748
  20. D. W. Kim, W. K. Chung and D. Shin, Radiat. Prot. Dosim. 149, 101 (2012). https://doi.org/10.1093/rpd/ncr223
  21. K. Ricketts et al., Int. J. Radiat. Oncol. Biol. Phys. 95, 1513 (2016). https://doi.org/10.1016/j.ijrobp.2016.03.021
  22. A. Fidanzio et al., Phys. Med. 27, 30 (2011). https://doi.org/10.1016/j.ejmp.2010.02.002
  23. P. Francois, P. Boissard, L. Berger and A. Mazal, Phys. Med. 27, 1 (2011). https://doi.org/10.1016/j.ejmp.2010.06.002