• Title/Summary/Keyword: Patient skin dose

Search Result 146, Processing Time 0.03 seconds

A Study on the Skin Dose Measurement of Glass Dosimeter Use During Rectal Cancer 3field Technic and Cervical Cancer 4field Technic Radiation Therapy (직장암 3문조사와 자궁경부암 4문조사 방사선 치료 시 유리선량계를 이용한 피부선량 측정에 관한 연구)

  • Shin, Seong-Soo;Choi, Won-Sik;Park, Cheol-Soo;Lee, Sun-Yeb;Cho, Jae-Hwan;Seo, Jeong-Min;Shim, Jae-Koo;Kim, Chan-Hyeong;Goo, Eun-Hoe;Kim, Eng-Chan
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.157-163
    • /
    • 2011
  • Recently a variety of high technologies for radiation therapy (IMRT, SRS,. 3D-RT, etc.) has been developed. For the cervical and rectal cancer, 3field or 4field radiotherapy have been applied to the patients. In the case of two-dimensional treatment, one of the most typical side-effects is skin burn due to the radiation irradiation. In general the skin dose is evaluated by only a single measurement during the whole treatment period. In this study, however, skin dose was measured in each radiation treatment and the total skin dose was accumulated in a glass dosimeter through all the cases. After simulating the skin dose from treatment planning system, the results were compared with the actual skin doses. The results showed a good agreement between two data sets. Even though there are certain amount of errors caused by the patient movement along the treatment, the difference between actual dose and simulated dose was within the accepted range of error.

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

Skin Graft-versus-host Disease Following Autologous Stem Cell Transplantation for Multiple Myeloma

  • Lee, Sung-Eun;Yoon, Jae-Ho;Shin, Seung-Hwan;Park, Gyeongsin;Min, Chang-Ki
    • IMMUNE NETWORK
    • /
    • v.13 no.3
    • /
    • pp.107-110
    • /
    • 2013
  • Graft-versus-host disease (GVHD) is a common complication of allogeneic stem cell transplantation (allo-SCT). However, a similar syndrome has been reported in autologous stem cell transplantation (ASCT) as well. The target organs of GVHD in ASCT are the skin, liver and gastrointestinal (GI) tract, which are consistent with those in allo-SCT. Histologic findings from the skin and the mucosa of the GI tract also show similar features. Here we describe a case of autologous GVHD involving the skin of a patient who underwent ASCT for multiple myeloma. In this patient, the response to a total prednisone dose of 0.5 mg/kg/day was unsatisfactory, and the patient required more intensive and prolonged immunosuppressive therapy with slow tapering.

A Study on Accuracy and Usefulness of In-vivo Dosimetry in Proton Therapy (양성자 치료에서 생체 내 선량측정 검출기(In-vivo dosimety)의 정확성과 유용성에 관한 연구)

  • Kim, Sunyoung;Choi, Jaehyock;Won, Huisu;Hong, Joowan;Cho, Jaehwan;Lee, Sunyeob;Park, Cheolsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • In this study, the authors attempted to measure the skin dose by irradiating the actual dose on to the TLD(Thermo-Luminescence Dosimeter) and EBT3 Film used as the In-vivo dosimetry after planning the same treatment as the actual patient on a Phantom, because the erythema or dermatitis is frequently occurred on the patients' skin at the time of the proton therapy of medulloblastoma patient receiving the proton therapy. They intended to know whether there is the usefulness for the dosimetry of skin by the comparative analysis of the measured dose values with the treatment planned skin dose. The CT scan from the Brain to the Pelvis was done by placing a phantom on the CSI(Cranio-spinal irradiation) Set-up position of Medulloblastoma, and the treatment Isocenter point was aligned by using DIPS(Digital Image Positioning System) in the treatment room after planning a proton therapy. The treatment Isocenter point of 5 areas that the proton beam was entered into them, and Markers of 2 areas shown in the Phantom during CT scans, that is, in all 7 points, TLD and EBT3 Film pre-calibrated are alternatively attached, and the proton beam that the treatment was planned, was irradiated by 10 times, respectively. As a result of the comparative analysis of the average value calculated from the result values obtained by the repeated measurement of 10 times with the Skin Dose measured in the treatment planning system, the measured dose values of 6 points, except for one point that the accurate measurement was lacked due to the measurement position with a difficulty showed the distribution of the absolute dose value ${\pm}2%$ in both TLD and EBT Film. In conclusion, in this study, the clinical usefulness of the TLD and EBT3 Film for the Enterance skin dose measurement in the first proton therapy in Korea was confirmed.

Evaluation of the Breast plan using the TLD and Mosfet for the skin dose (열형광선량계(TLD)와 MOSFET을 이용한 유방암 방사선치료계획에 대한 피부선량 평가)

  • Kim, seon myeong;Kim, young bum;Bak, sang yun;Lee, sang rok;Jeong, se young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose : The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. Subjectss and Methods : In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. Results : On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% ~ 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner'was highest in the MOSFET. Conclusion : Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay close attention. Using the treatment planning of dose fluence is good to compensate the lack of dose, but It increases the dose of the selective range rather than the overall dose. Therefore, choosing the radiotherapy technique is desirable in the lights of the age and performance of the patient.

  • PDF

A Study of Thermoplastic Masks Deformation for Reducing Scattered Ray in Radiation Therapy (방사선치료용 열가소성 플라스틱 마스크의 산란선 감소를 위한 마스크 변형에 관한 연구)

  • Seong-Min, Lee;Jun-Young, Lee;Jae-Hyun, Kim;Kyeong-Hwan, Jeong;Jeong-Min, Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • In head and neck radiation therapy, the thermoplastic immobilization mask used for fixing the patient's posture and reproducibility causes scattered rays by being in close contact with the skin. To investigate the increase in skin dose due to the scattered rays generated from the immobilization mask, we evaluated dose reduction by decreasing contact between face skin and immobilization mask in computerized radiotherapy planning system with CT scanned images. In addition, to confirm the reproducibility problem of the setup due to the decrease in the cover area of immobilizing, the difference of each setup was confirmed using DRR and CT images. As the mask area covered for immobilizing was reduced, the dose on the skin surface significantly decreased, and it was confirmed that there was no significant difference in reproducibility even if the entire face was not covered and fixed.

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF

TA Study on Patient Exposure Dose Used the Phantom for Interventional Procedure (중재적 시술 시 팬텀을 이용한 환자의 피폭선량 분석)

  • Kang, Byung-Sam;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Because interventional procedure operates looking at premier as real time when perate intervention enemy, by patient is revealed during suitableness time in radiation, side effect such as radiation injury of skin is apt to happen. It established by purpose of study that measure exposure dose that patient receives about these problem, and find solution for radiation injury and repletion method. In this study, we used Rando phantom of identical structure with the human body which becomes accomplished with 4 branch ingredient of the attempt and system equivalent material them and absorbed dose were measured by TLD. According to the laboratory, it shows that operations such as TFCA procedure or uterine myoma embolization are more dangerous than TACE procedure. If both operations are inspected during a short time, it is not affected in being bombed. However, it can lead to palliative agenesis or depilate, definitive agenesis only if operations are repeated more than three times. Dose distibution based on experiment, to reduce radiation exposure to patients result from reduction of scatter ray as we control field size of radiation and protection of side organs except for tumor. also we knew that we can protect patients form radiation exposure, if we increas SOD and decrease SID.

  • PDF

The evaluation of dose of TSEI with TLD and diode dector of the uterine cervix cancer (열형광선량계와 반도체검출기를 이용한 전신피부전자선조사의 선량평가)

  • Je Young Wan;Na Keyung Su;Yoon IL Kyu;Park Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2005
  • Purpose : To evaluate radiation dose and accuracy with TLD and diode detector when treat total skin with electron beam. Materials and Methods : Using Stanford Technique, we treated patient with Mycosis Fungoides. 6 MeV electron beam of LINAC was used and the SSD was 300 cm. Also, acrylic speller(0.8 cm) was used. The patient position was 6 types and the gantry angle was 64, 90 and $116^{\circ}$. The patient's skin dose and the output were detected 5 to 6 times with TLD and diode. Result : The deviations of dose detected with TLD from tumor dose were CA $+\;6\%$, thigh $+\;8\%$, umbilicus $+\;4\%$, calf $-\;8\%$, vertex $-\;74.4\%$, deep axillae $-\;10.2\%$, anus and testis $-\;87\%$, sole $-\;86\%$ and nails shielded with 4mm lead $+4\%$. The deviations of dose detected with diode were $-4.5\%{\sim}+5\%$ at the patient center and $-1.1\%{\sim}+1\%$ at the speller. Conclusion : The deviation of total skin dose was $+\;8\%{\sim}-\;8\%$ and that deviation was within the acceptable range(${\pm}\;10\%$). The boost dose was irradiated for the low dose areas(vertex, anus, sole). The electron beam output detected at the sootier was stable. It is thought that the deviation of dose at patient center detected with diode was induced by detection point and patient position.

  • PDF

Correction Factor for the Eenergy Dependence of a Optically Stimulated Luminescent Dosimeter in Diagnostic Radiography (진단방사선촬영에서 광자극형광선량계의 에너지의존성에 대한 보정인자)

  • Kim, Jong-Eon;Im, In-Chul;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.261-265
    • /
    • 2011
  • The purpose of this study is to calculate correction factors for energy dependence of a nanoDotdosimeter to measure patient's skin dose in diagnostic radiography. The correction factors were calculated by using the values of mean energy for the RQR standard radiation qualities of IEC publicated by Rosado et al. and the energy response graph of dosimeter relative X-ray on phantom calibration provided by landaur corporation. Results showed the correction factors of 1-1.33 over the tube voltage range of 40-50 kVp. Acquired correction factors are considered to be useful in the clinics for the measurement of accurate skin dose at each tube voltage.