• Title/Summary/Keyword: Patient skin dose

Search Result 146, Processing Time 0.032 seconds

Preserved Respiratory Function after Reconstruction of a Large Chest Wall Defect

  • Kim, Yu Jin;Kim, Yoon Ji;Lee, Jae-Ik
    • Archives of Reconstructive Microsurgery
    • /
    • v.24 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • A case report of a patient who developed radiation-induced sarcoma in the left chest wall is presented. The patient had partial mastectomy and adjuvant radiation therapy (total dose, 5,220 cGy) and chemotherapy. Five years later, she visited with rapidly growing mass with central ulceration in the irradiated chest wall. The mass was diagnosed as malignant fibrous histiocytoma. The chest wall mass resected en bloc ($23{\times}18cm$) including five consecutive ribs. After the defected thoracic cage was reinforced using a polytetrafluoroethylene patch, omental flap and split thickness skin graft was done for soft tissue coverage. We applied negative pressure wound closer system for effective suction of omeantal exudate. The wound healed without complications. The patient suffered no perioperative pulmonary complications. Pulmonary function tests showed no significant changes. Each of Gore-Tex, omental flap, negative pressure wound therapy and skin graft is widely used method. However, If these methods are used in combination, we can reconstruct the large defect of chest wall including multiple ribs without any repiratory function problems.

The Consideration of Bolus Effects of Games Attached on Lesion area (환부 부착용 거즈의 Bolus Effect에 관할 고찰)

  • Park JuYoung;Ju SangKyu;Park YoungChul;Han YoungYi;Shin EunHyuk;Park YongHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2004
  • The aim of this study is to evaluate the effect of skin dose and PDD by using wounds protecting gauzes or Vaselinespread gauzes. And it was studied that the possibility to substitute custom bolus into gauzes. 4MV photon (CL600C, varian, US), Polystyrene Phantom (30(W) X30(L) X 30(H)) with Markus chamber(PTW, US) were used for dose measurement. This study was distinguished natural gauzes and spread over Vaseline gauzes. We gave variety to the gauze thickness at 5, 10 and 15 sheets respectively. For comparison between using bolus and not that, we had used 1.0 cm thickness bolus so that analyzed surface dose and PDD at the same conditions above mentioned. When maximum point was defined as reference point, surface dose was measured as $35\%$ in open beam. When the gauzes were attached to surface as 5, 10 and 15 sheets, surface dose were increased as 69, 80 and $91\%$ respectively according to thickness of gauzes. When spread over Vaseline gauzes were attached to surface as 5, 10 and 15 sheets, surface dose were increased respectively as 98, 100 and $98\%$ according to thickness of gauzes. Also when 0.5 cm bolus and 5 sheets gauzes were composed, surface dose was measured as $98\%$. The gauzes that were attached to skin surface in radiation therapy had been scattering material and contributed increasing surface dose without variation of percentage depth dose. However, if we want to delivery much dose to skin surface then we have to apply many sheets of gauzes to skin surface. Although we get easy that result by bolus or spread over Vaseline gauzes, we have to revise percentage depth dose at calculation. Therefore, if we find pertinent conditions based on measured data that are considered skin dose and patient setup efficiency, to replace custom bolus with gauzes will be helpful to efficient treatment.

  • PDF

Radiation Therapy in Elderly Skin Cancer (노령의 피부암에서 방사선치료)

  • Kim, Jin-Hee
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Purpose: To evaluate the long term results(local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. Material and Methods: The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma(10 patients), basal cell carcinoma(3 patients), verrucous carcinoma(1 patient) and skin adnexal origin carcinoma(1 patient). The most common tumor location was the head(13 patients). The mean tumor diameter was 4.9 cm(range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from $50{\sim}80$ Gy(mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. Results: The local control rates were 100%(15/15). In addition, the five year disease free survival rate(5YDFS) was 80% and twelve patients(80%) had no recurrence and skin cancer recurrence occurred in 3 patients(20%). Three patients have lived an average of 90 months($68{\sim}120$ months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. Conclusion: The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin cancer in elderly patients who achieved a good survival rate and few minor complications.

Development and Evaluation of a Thimble-Like Head Bolus Shield for Hemi-Body Electron Beam Irradiation Technique

  • Shin, Wook-Geun;Lee, Sung Young;Jin, Hyeongmin;Kim, Jeongho;Kang, Seonghee;Kim, Jung-in;Jung, Seongmoon
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.152-157
    • /
    • 2022
  • Background: The hemi-body electron beam irradiation (HBIe-) technique has been proposed for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, shielding electrons is complicated owing to electron scattering effects. In this study, we developed a thimble-like head bolus shield that surrounds the patient's entire head to prevent irradiation of the head during HBIe-. Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufactured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated head bolus was experimentally validated by measuring the dose to the Rando phantom using a metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configuration of HBIe-. Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% compared with that without a shield in the MC simulations. In addition, an improvement in fluence degradation outside the head shield was observed. In the experimental validation using the inhouse-developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% of the prescribed dose. Conclusion: A thimble-like head bolus shield for the HBIe- technique was developed and validated in this study. This bolus effectively spares healthy skin without underdosage in the region of the target skin in HBIe-.

'THE METHOD OF TBI FOR ACCURATE REPRODUCTION OF RADIATION FIELD AND PATIENT POSITION' (방사선 전신 조사 치료시 정확한 환자자세 및 조사야 재현을 위한 방법)

  • KWEON YOUNG-HO;LEE BYOUNG-GOO;WHANG WOONG-KU;KIM YOU-HYUN
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.156-166
    • /
    • 1995
  • Total body irradiation (TBI) requires large radiation field and extended source to axis distance (SAD), therefore in needs large size treatment room and it needs compensators which components. Appropriate thickness beam spoiler should be used to raise skin dose. Treatment machine, photon energy, total dose, dose rate, dose fractionation, patient position, shield of normal tissues and organs were known to important parameters for TBI. TBI disturbes regular daily treatment schedule and significantly overloads Radiation on oncology departments and during the treatment session it requires accurate reproduction of radiation field and patient position. We were enable to TBI in small size treatment room and short SAD with parallel opposing lateral fields technique and achieved homogenious whole body dose distribution using pb compensators and controled lung dose by lung shield blocks. Drawing a patient shadow on the wall, we could shortened set up time and possible to accurate reproduction of radiation field and patient position.

  • PDF

The Study on the Reduction of Patient Surface Dose Through the use of Copper Filter in a Digital Chest Radiography (디지털 흉부 촬영에서 구리필터사용에 따른 환자 표면선량 감소효과에 관한 연구)

  • Shin, Soo-In;Kim, Chong-Yeal;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.31 no.3
    • /
    • pp.223-228
    • /
    • 2008
  • The most critical point in the medical use of radiation is to minimize the patient's entrance dose while maintaining the diagnostic function. Low-energy photons (long wave X-ray) among diagnostic X-rays are unnecessary because they are mostly absorbed and contribute the increase of patient's entrance dose. The most effective method to eliminate the low-energy photons is to use the filtering plate. The experiments were performed by observing the image quality. The skin entrance dose was 0.3 mmCu (copper) filter. A total of 80 images were prepared as two sets of 40 cuts. In the first set (of 40 cuts), 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of signal + noise image set. In the second set of 40 cuts, 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of non-signal image (noisy image) with random location of diameter 4 mm and 3 mm thickness of acryl disc for ROC signal at the chest phantom. P(S/s) and P(S/n) were calculated and the ROC curve was described in terms of sensitivity and specificity. Accuracy were evaluated after reading by five radiologists. The number of optically observable lesions was counted through ANSI chest phantom and contrast-detail phantom by recommendation of AAPM when non-filter or Cu filter was used, and the skin entrance dose was also measured for both conditions. As the result of the study, when the Cu filter was applied, favorable outcomes were observed on, the ROC Curve was located on the upper left area, sensitivity, accuracy and the number of CD phantom lesions were reasonable. Furthermore, if skin entrance dose was reduced, the use of additional filtration may be required to be considered in many other cases.

  • PDF

Comparisons of Image Quality and Entrance Surface Doses according to Care Dose 4D + Care kV in Chest CT (Chest CT에서 Care Dose 4D+Care kV에 따른 화질과 입사표면선량 비교)

  • Kang, Eun-Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • This study compared DLP values along with phantom entrance surface doses and the image quality of chest CT scans made using a Care Dose 4D+Care kV System, scans that are made using only the Care Dose 4D function, and scans that are made with changes made by applying 80 kVp, 100 kVp, 120 kVp, and 140 kVp to the Care Dose 4D and tube voltage to search for methods to maintain the highest image quality with minimal patient doses. It was shown that DLP values decreased 6.727% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 6.481% when scans were taken with Chest Care Dose 4D + Care kV. With Chest Non as a standard, skin surface doses decreased 16.519% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 15.705% when scans were taken with Chest Care Dose 4D + Care kV. With comparisons of image quality, when comparisons were made with Chest Non, comparisons made of SNR values and CNR values in all scanning conditions including Care Dose 4D + Care kV showed that there were no significant differences at P>0.05. Imaging using Chest Care Dose 4D + Care kV in chest CT showed that exposure doses decreased similarly to result values gained from the best conditions through manual adjustments of kV and mAS, and there were no significant differences in image SNR and CNR. If the Chest Care Dose 4D + Care kV function is used, image quality is maintained and patient exposure to radiation can be reduced.

Dosimetric effects of couch attenuation and air gaps on prone breast radiation therapy (Prone Breast Phantom을 이용한 couch 산란영향 평가)

  • Kim, Min Seok;Jeon, Soo Dong;Bae, Sun Myeong;Baek, Geum Mun;Song, Heung Gwon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate the dosimetric effects of couch attenuation and air gaps using 3D phantom for prone breast radiation therapy. Materials and method: A 3D printer(Builder Extreme 1000) and computed tomography (CT) images of a breast cancer patient were used to manufacture the customized breast phantom. Eclipse External Beam Planning 13.6 (Varian Medical Systems Palo Alto, CA, USA) was used to create the treatment plan with a dose of 200 cGy per fraction with 6 MV energy. The Optically Stimulated Luminescence Detector(OSLD) was used to measure the skin dose at four points (Med 1, Med 2, Lat 1, Lat 2) on the 3D phantom and ion-chamber (FC65-G) were used to perform the in-vivo dosimetry at the two points (Anterior, Posterior). The Skin dose and in-vivo dosimetry were measured with reference air gap (3 cm) and increased air gaps (1, 2, 3, 4, 5, 6 cm) from reference distance between the couch and 3D phantom. Results: As a result, measurement for the skin dose at lateral point showed a similar value within ${\pm}4%$ compared to the plan. While the air gap increased, skin dose at medial 1 was reduced. And it was also reduced over 7 % when the air gap was more than 3 cm compared to radiation therapy plan. At medial 2 it was reduced over 4 % as well. The changes of dose from variety of the air gap showed similar value within ${\pm}1%$ at posterior. As the air gap was increased, the dose at anterior was also increased and it was increased by 1 % from the air gap distance more than 3 cm. Conclusion: Dosimetrical measurement using 3D phantom is very useful to evaluate the dosimetric effects of couch attenuation and air gaps for prone breast radiation therapy. And it is possible to reduce the skin dose and increase the accuracy of the radiation dose delivery by appling the optimized air gap.

  • PDF

Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT (폐암 영상유도방사선 치료 시 CBCT와 4D-CBCT를 이용한 흡수선량 및 유효선량에 관한 선량 평가)

  • Kim, Dae yong;Lee, Woo Suk;Koo, Ki Lae;Kim, Joo Seob;Lee, Sang Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose : To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. Materials and Methods : This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography) Results : Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv Conclusion : As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  • PDF

In Pediatric Leukemia, Dose Evaluation according to the Type of Compensators in Total Body Irradiation (소아백혈병 환자의 전신방사선조사 시 조직보상체의 재질변화에 따른 선량평가)

  • Lee, Dongyeon;Kim, Changsoo;Kim, Junghoon
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Total body irradiation(TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.