• Title/Summary/Keyword: Pathogenicity

검색결과 1,330건 처리시간 0.027초

Pomegranate (Punica granatum L.) Peel Extract Inhibits Quorum Sensing and Biofilm Formation Potential in Yersinia enterocolitica (석류 껍질추출물이 식중독균 여시니아 엔테로콜리티카의 쿼럼센싱과 바이오필름 형성능 억제)

  • Oh, Soo Kyung;Chang, Hyun Joo;Chun, Hyang Sook;Kim, Hyun Jin;Lee, Nari
    • Microbiology and Biotechnology Letters
    • /
    • 제43권4호
    • /
    • pp.357-366
    • /
    • 2015
  • Quorum sensing (QS) is involved in the process of cell-to-cell communication and as a gene regulatory mechanism, which has been implicated in bacterial pathogenicity. Bacteria use this QS system to control a variety of physiological processes. In this study, pomegranate (Punica granatum L.) peel extract (PPE) was first screened for its ability to inhibit QS in bio-reporter strains (Chromobacterium violaceum and C. violaceum CV026). Next, the ability of PPE to inhibit swimming motility and biofilm formation was examined in Y. enterocolitica. Additionally, changes in the expression of specific genes involved in the synthesis of the N-acylhomoserine lactones (AHLs; yenI and yenR) and in the flagellar regulon (fliA, fleB and flhDC) were evaluated by reverse transcription (RT)-PCR. The results show that PPE specifically inhibited and reduced QS-controlled violacein production by 78.5% in C. violaceum CV026, and decreased QS-associated biofilm formation and swimming motility in Y. enterocolitica without significantly affecting bacterial growth. These inhibitory effects were also associated with the down-regulation of gene expression involved in the synthesis of AHLs and in motility. Our results suggest that PPE could be a potential therapeutic agent to prevent enteropathogens in humans, as well as highlight the need to further investigate the in vivo properties of PPE for clinical applications.

Identification and Characterization of Paraconiothyrium brasiliense from Garden Plant Pachysandra terminalis (가든식물 수호초(Pachysandra terminalis)로부터 Paraconiothyrium brasiliense의 분리 및 동정)

  • Choi, Min Ah;Park, Seung Jun;Ahn, Geum Ran;Kim, Seong Hwan
    • The Korean Journal of Mycology
    • /
    • 제42권4호
    • /
    • pp.262-268
    • /
    • 2014
  • A fungal isolate DUCC5000 from a garden plant Pachysandra terminalis was identified as Paraconiothyrium brasiliense based on the results of morphological and molecular studies. The fungus formed brown to black conidiomata of (0.2-0.7)-2(-3.5) mm singly or as a group on PDA. Conidia measured $2-5{\times}1.8-3{\mu}m$ in size, hyaline, ellipsoid to short-cylindrical, and rounded at both ends. The internal transcribed spacer (ITS) DNA of the isolate shared 100% nucleotide sequence homology with those of known P. brasiliense isolates. Phylogenetic tree inferred from the ITS sequence analysis showed that the DUCC5000 isolate formed a clade with known isolates of P. brasiliense. The fungal mycelia grew better on oatmeal agar than on MEA and PDA. On PDA media under various pH conditions, fungal mycelial growth was observed at pH 9. Colony morphology of the fungus tended to alter depending on the kinds of nutrient media and pH condition. On chromagenic media, the fungus demonstrated its ability to produce extracellular enzymes including amyalse, avicelase, ${\beta}$-glucosidase, protease, and xylanase. However, in pathogenicity testing, no disease symptoms were observed on the leaves of P. terminalis. This strain is the first report on P. terminalis in Korea.

Characterization of Fusarium solani Causing Fusarium Root Rot of Lisianthus in Korea (꽃도라지 뿌리썩음병을 일으키는 Fusarium solani 의 특성)

  • Choi, Hyo-Won;Hong, Sung Kee;Lee, Young Kee;Kim, Jeomsoon;Lee, Jae Guem;Kim, Hyo Won;Kang, Eun Hye;Lee, Eun Hyeong
    • The Korean Journal of Mycology
    • /
    • 제45권1호
    • /
    • pp.74-82
    • /
    • 2017
  • Lisianthus (Eustoma grandiflorum) is a flowering ornamental plant used widely in Korea. In 2015, wilting, damping-off, stunting, and root rot symptoms were observed in lisianthus plants of Yeoju and Gimhae, Korea. Affected seedlings appeared yellow and showed poor development of root systems in the field and in nursery boxes. Furthermore, affected plants were yellow, stunted, and died at approximately 2-3 months after transplanting. Fusarium species were consistently isolated from the basal stems of diseased plants. Nine isolates were identified as Fusarium solani based on morphological characteristics. Macroconidia of isolates were relatively wide, straight-to-slightly curved, and microconidia formed in false heads on long monophialides. Abundant chlamydospores were produced at the middle or tips of hyphae. To confirm this identification, a molecular analysis of the translation elongation factor 1 alpha (TEF) and RNA polymerase II subunit (RPB2) genes was conducted. The sequences of TEF and RPB2 showed 99.2-99.9% and 98.0-98.1% similarity, respectively, to those of reference F. solani strains in NCBI GenBank. Pathogenicity was tested using root dipping inoculation of healthy lisianthus seedlings. Symptoms were observed within 7 days of inoculation only in inoculated plants. This is the first report of F. solani causing Fusarium root rot on lisianthus in Korea.

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Brown Ring Spot on Leaves of Kiwifruit Caused by Alternaria alternata (Alternaria alternata에 의한 참다래 갈색둥근무늬병)

  • Jeong, In-Ho;Kim, Gyung-Hee;Lim, Myoung-Taek;Hur, Jae-Seoun;Shin, Jong-Sup;Koh, Young-Jin
    • Research in Plant Disease
    • /
    • 제14권1호
    • /
    • pp.68-70
    • /
    • 2008
  • Brown leaf spots on leaves of kiwifruit(Actinidia deliciosa) were observed at farmers' orchards in Suncheon and Goheung, Jeonnam Province, Korea in June, 2006. They developed to form dark brown ring spots and severely infected leaves resulted in defoliation during the growing season of kiwifruit. Alternaria sp. was isolated from the diseased leaves repeatedly and was identified as Alternaria alternata on the basis of its mycological characteristics on potato dextrose agar and its pathogenicity was confirmed by wound inoculation on healthy leaves of kiwifruit. A. alternata formed gray to dark sooty gray colony and produced numerous conidia on potato dextrose agar. The conidia, commonly in long chains of 5 or more produced on conidiophores, have $3{\sim}5$ transverse and $1{\sim}2$ longitudinal septa and mostly ovoid or obclavate in shape and were pale brown golden brown in color. The condia were $16.5{\sim}42.1{\times}6.7{\sim}19.5\;{\mu}m$ in size and conidiophores were $8.6{\sim}112.7\;{\mu}m$ in length. This is the first report on the brown ring spot on leaves of kiwifruit caused by A. alternata in Korea.

Occurrence of Rhizopus Soft Rot on Apple Fruit Caused by Rhizopus stolonifer in Korea (Rhizopus stolonifer에 의한 사과 무름병 발생)

  • Kwon, Jin-Hyeuk;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • 제14권1호
    • /
    • pp.57-60
    • /
    • 2008
  • A rhizopus soft rot caused by Rhizopus stolonifer occurred sporadically on apple fruits (Malus pumila var. dulcissima Koidz.) at a wholesale market of agricultural products in Jinju, Korea in 2006 and 2007. Infected fruits were rapidly water-soaked, softened and rotted. The symptoms were initiated mainly from wounds or cracks occurred at harvest time. Sporangiophores were $950{\sim}1,900\;{\mu}m$ in length and $12{\sim}22\;{\mu}m$ in width. Sporangia were globose or hemispheric and $82{\sim}185\;{\mu}m$ in size. The color of sporangia was white and cottony at first and gradually turned to brownish black, bearing abundant spores when matured. Columella were hemispheric and $70{\sim}85\;{\mu}m$ in size. Sporangiospores were irregular round or oval, brownish-black streaked and $8{\sim}18{\times}7{\sim}8\;{\mu}m$ in size. Optimum temperature for mycelial growth of the fungus on PDA was $25^{\circ}C$. On the basis of mycological characteristics and pathogenicity to apple the causal fungus was identified as Rhizopus stolonifer (Ehrenb.) Vuill. This is the first report of Rhizopus soft rot by R. stolonifer on Fuji apple in Korea.

Bacterial Common Blight and Fuscous Blight of Small Red Bean caused by Xanthomonas axonopodis pv. phaseoli and X. axonopodis pv. phaseoli var. fuscans (Xanthomonas axonopodis pv. phaseoli와 X. axonopodis pv. phaseoli var. fuscans에 의한 팥의 세균성잎마름병)

  • Lee Seung-Don;Lee Jung-Hee;Moon Jung-Kyung;Heu Sung-Gi;Ra Dong-Soo
    • Research in Plant Disease
    • /
    • 제12권2호
    • /
    • pp.129-133
    • /
    • 2006
  • A bacterial disease of small red bean (Phaseolus angularis) was observed on field-grown plants in Suwon in year 2003. Leaf symptoms initially appeared as water-soaked spots that gradually enlarged, became flaccid and necrotic and were often bordered by a small zone of lemon yellow tissue. In the case of severe infection, dead leaves were defoliated. Pod symptoms consisted of the lesions that were generally circular, slightly sunken and dark reddish brown. Isolation made from diseased leaves on yeast extract dextrose calcium carbonate agar yielded nearly pure cultures of a yellow-pigmented bacterium typical of a xanthomonad. Three bacterial strains were purified and used for further tests. Pathogenicity of strains was confirmed on 3-week-old small red bean plants sprayed with bacterial suspensions containing $10^8 cfu/ml$ of phosphate buffered saline. The representative Xanthomonas strains isolated from small red bean were compared with X. axonopodis pv. phaseoli and X. axonopodis pv. phaseoli var. fuscans type strains for fatty acid profiles, biochemical tests and metabolic fingerprints using Biolog GN2 microplate, showing that all outcomes were indistinguishable between our isolates and reference strains. Two of three strains produced a melanin-like brown pigment extracellularly on King's medium B agar. These results suggest that this new small red bean disease observed in Suwon is bacterial fuscous blight caused by X. axonopodis pv. phaseoli and X. axonopodis pv. phaseoli var. fuscans.

Black Rot of Broccoli Caused by Xanthomonas campestris pv. campestris (Xanthomonas campestris pv. campestris에 의한 브로콜리의 검은썩음병)

  • Lee Seung-Don;Lee Jung-Hee;Kim Sun-Yee;Kim Yong-Ki;Lee Yong-Hoon;Heu Sung-Gi;Ra Dong-Soo
    • Research in Plant Disease
    • /
    • 제12권2호
    • /
    • pp.134-138
    • /
    • 2006
  • A new bacterial disease of broccoli (Brassica oleracea var. italica) was observed on field-grown plants in Pyungchang during 2003 and 2004. Seedling infections first appeared as a blackening along the margins of the cotyledon. Cotyledon shriveled and dropped off. Infected seedlings were stunted and yellowed and eventually died. The disease was easily recognized by the presence of yellow, V-shaped, or U-shaped areas extending inward from margin of the leaf. As the disease progressed, the yellow lesions turned brown and the tissues died. Isolations made from diseased leaves on yeast extract dextrose calcium carbonate agar yielded nearly pure cultures of a yellow-pigmented bacterium typical of a xanthomonad. Two bacterial strains were purified and used for further tests. Pathogenicity of strains was confirmed on 3-week-old crucifer (cabbage, Chinese cabbage, kale, radish and broccoli) plants cut by scissors with bacterial suspensions containing $10^8 cfu/ml$ of phosphate buffered saline. The Biolog and fatty acid analyses and 16S rDNA sequencing of two strains (SL4797 and SL4800) from broccoli black rot showed that they could be identified as X. campestris pv. campestris because of their high similarity to the tester strain (X. campestris pv. campestris NCPPB528) with a match probability of 100%. This is the first report of black rot of broccoli in Korea.

Different Responses of Zoysiagrass (Zoysia spp.) Ecotypes against Puccinia zoysiae Causing Rust Disease in Field (포장에서 녹병 병원균인 Puccinia zoysiae에 대한 한국잔디의 종별 상이한 반응)

  • Sung, Chang Hyun;Lee, Jeong Ho;Koo, Jun Hak;Hong, Jeum Kyu;Youn, Jeong Ho;Chang, Seog Won
    • Weed & Turfgrass Science
    • /
    • 제5권4호
    • /
    • pp.256-259
    • /
    • 2016
  • An obligate plant pathogenic fungus Puccinia zoysiae Dietel, the causal agent of rust disease, which is implicated in the damage of zoysiagrass (Zoysia spp.) in Korea. The fungus is one of the important pathogens, which attacks and colonizes susceptible zoysiagrass. Zoysia rust disease was observed in Jangseong, Hoengseong and Hapcheon in 2014 and 2015, Korea. The typical symptoms of the disease appeared first as small white spots on the leaf and stem of zoysiagrass plants, and turn brownish, dark brown spores revealed on the lesions. Uredospores were light brown in color, ellipsoid or spherical in shape and $22.0{\sim}25.0{\times}15.0{\sim}17.5{\mu}m$ in size. On the basis of the morphological characteristics, the fungus was identified as P. zoysiae. Pathogenicity of the fungus was proved by artificial inoculation on Z. japonica. The rust disease firstly appeared approx. early or middle June and then increased middle of October in Korea. In field, Z. matrella ecotypes were more resistant than Z. japonica ecotypes against the pathogen. Disease response against the pathogen was different among ecotypes of each species, respectively.

Aphicidal Activity of Different Fraction Extracts of Culture Filtrate of Beauveria bassiana Isolate against Aphids (Beauveria bassiana 배양여액 분획추출물의 진딧물 살충활성)

  • Jeong, Ga-Young;Han, Ji-Hee;Kim, Jeong-Jun;Lee, Sang-Yeob
    • Korean Journal of Organic Agriculture
    • /
    • 제25권1호
    • /
    • pp.113-124
    • /
    • 2017
  • Cotton aphid (Aphis gossypii) and green peach aphid (Myzus persicae) are serious pests damaging various crops including vegetables such as pepper, cucumber, and Chinese cabbage. We conducted a study to control two aphids with secondary metabolite of entomopathogenic fungus Beauveria bassiana. A B. bassiana was already selected as a high virulence isolate against cotton aphid and green peach aphid. The culture filtrate of the isolate showed high pathogenicity against both aphids as 100% mortality against cotton aphid 3 days after treatment and 99% against green peach aphid 5 days after treatment. A different fraction extracts with $CHCl_3$ : MeOH of B. bassiana culture filtrate (30:1, 50:1, 70:1, 90:1, 100:1; v/v) through silica gel column chromatography showed different control effect to aphids. Among them, 50:1 ($CHCl_3$ : MeOH) fraction had highest mortality as 77.3% and 75.4% against A. gossypii and M. persicae, respectively. A mixture of each fraction (1:1) had no synergistic effects because control effect of every mixture was lower than only 50:1 extract; for example, mortality of 50:1 + 70:1 showed $2^{nd}$ highest as 72% of cotton aphid and 70.2% of green peach aphid and other mixtures were lower than these values. In future we will study the identification and mass production of aphicidal compound isolated from 50:1 fraction to develop stable aphid control agent.