• Title/Summary/Keyword: Pathogenic microbes

Search Result 97, Processing Time 0.024 seconds

A Study on Microbial Pollution of Indoor Air at Elderly Care Facilities (노인요양시설의 실내공기 중 미생물 오염에 관한 연구)

  • Kim, Sang-Ha;Kim, Young-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2485-2491
    • /
    • 2009
  • Culture was performed by using Sheep Blood Agar Plate (BAP, Asan Pharmaceutical) and Sabouraud Dextrose Ager (SDA, Asan Pharmaceutical) along with air $IDEAL^{TM}$ (Biomerieux), which is a microbe interceptor based on inertial impaction interception, in order to investigate bioaerosol in indoor and outdoor air at five elderly care facilities in a metropolis and an urban-rural consolidated city for two months from April 1 to May 31, 2007. From the culture followed by isolation and identification, the following conclusions were drawn. 1. As for the general isolation of microbes in each facility, care center S had the largest amount of microbes (263 cfu/$m^3$) isolated in a 300L room, followed by care center U having 123 cfu/$m^3$ isolated. 2. As for the number of bacteria isolated from a medium intercepting 300 L indoor, the largest amount of other unidentified or non-pathogenic Gram positive cocci (321 cfu/$m^3$) was isolated and most of the other Gram positive cocci were CNS (Coagulase Negative Staphylococcus). 3. As for the number of fungi isolated from a medium intercepting 300 L in a room, the largest number of Aspergillus spp. (66) was isolated, followed by Mucor spp. (62 cfu/$m^3$), Penicillium spp. (53 cfu/$m^3$), Alternaria spp. (50), and other unidentified or non-pathogenic fungi (42 cfu/$m^3$). 4. As for the rate of indoor and outdoor pollution, the average number of interceptions was all larger indoor than outdoor; the research differentiating the amount of air into 300 L and 500 L demonstrated that the larger amount of air led to more bacteria, making no great variation in the species.

Isopod Parasite Induced Secondary Microbial Infection in Marine Food Fishes

  • Ravichandran, S;Sivasubramanian, K;Parasuraman, P;Rajan, D. Karthick;kumar, G. Ramesh
    • Journal of fish pathology
    • /
    • v.29 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Isopods are parasitic crustaceans that pose serious threat to fisheries. Several studies have tried to explore the host-pathogen relationship between marine fishes and isopods. The present study aims to understanding the secondary infections in marine fishes pertaining to isopods. To assess the secondary infection in infected fishes, parasite infested and healthy tissues of fishes were collected. The samples were subjected to standard microbiological procedure to identify the presence of pathogenic bacteria and fungi. Our results showed the branchial region had the higher microbial load of non-sporulating cenocytic fungi in infected fishes. Moreover, fungal strains isolated from the parasitic lesion confirmed that the parasitation and body lesion facilitates the entry of several pathogenic microbes at the damaged host tissue. More over the immune regulation of fish fights back by producing minute cysts, trying to encapsulate the growing fungus. But this may eventually lead to systemic infestation and death of the fish.

Responses of Arabidopsis thaliana to Challenge by Pseudomonas syringae

  • Kim, Min Gab;Kim, Sun Young;Kim, Woe Yeon;Mackey, David;Lee, Sang Yeol
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.323-331
    • /
    • 2008
  • Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.

Assessment of the ozonation against pathogenic bacteria in the effluent of the quarantine station

  • Park, Seon Yeong;Kim, Joo Han;Kim, Chang Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2021
  • This study investigated how ozone treatment can successfully inactivate pathogenic bacteria in both artificial seawater and effluents discharged from the fishery quarantine station in Pyeongtaek Port, Korea. Vibrio sp. and Streptococcus sp. were initially inoculated into the artificial seawater. All microbes were almost completely inactivated within 10 min and 30 min by injecting 6.4 mg/min and 2.0 mg/min of ozone, respectively. It was discovered that the water storing Pleuronichthys, Pelteobagrus, and Cyprinus imported from China contained the indicator bacteria, Vibrio sp., Enterococcus sp., total coliforms, and heterotrophic microorganisms. Compared to the control, three indicator bacteria were detected at two to six times higher concentrations. The water samples displayed a diverse microbial community, comprising the following four phyla: Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria. Almost all indicator bacteria were inactivated in 5 min at 2.0 mg/min of ozonation; comparatively, 92.9%-98.2% of the less heterotrophic microorganisms were deactivated within the same time period. By increasing the dosage to 6.4 mg/min, 100% deactivation was achieved after 10 min. Despite the almost complete inactivation of most indicator bacteria at high doses after 10 min, several bacterial strains belonging to the Proteobacteria have still been found to be resistant under the given operational conditions.

Antibacterial Effect of Eucalyptus Oil, Tea Tree Oil, Grapefruit Seed Extract, Potassium Sorbate, and Lactic Acid for the development of Feminine Cleansers

  • Yuk, Young Sam
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.82-92
    • /
    • 2021
  • Purpose: It has been reported that the diversity and abundance of microbes in the vagina decrease due to the use of antimicrobial agents, and the high recurrence rate of female vaginitis due to this suggests that a new treatment is needed. Methods: In the experiment, we detected that 10% potassium sorbate solution, 1% eucalyptus oil solution, 1% tea tree oil solution, 400 µL/10 mL grapefruit seed extract solution, 100% lactic acid, 10% acetic acid solution, and 10% lactic acid solution were prepared and used. After adjusting the pH to 4, 5, and 6 with lactic acid and acetic acid in the mixed culture medium, each bacterium was inoculated into the medium and incubated for 72 h at 35℃. Incubate and 0 h each. 24 h. 48 h. The number of bacteria was measured after 72 h. Results: In the mixed culture test between lactic acid bacteria and pathogenic microorganisms, lactic acid bacteria showed good results at pH 5-5.5. Potassium sorbate, which has varying antibacterial activity based on the pH, killed pathogenic bacteria and allowed lactic acid bacteria to survive at pH 5.5. Conclusion: The formulation ratio obtained through this study could be used for the development of a feminine cleanser that can be used as a substitute for antibacterial agents. Further, the findings of this study may be able to solve the problem of antimicrobial resistance in the future.

Ultraviolet-activated peracetic acid treatment-enhanced Arabidopsis defense against Pseudomonas syringae pv. tomato DC3000

  • Min Cho;Se-Ri Kim;Injun Hwang;Kangmin Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.215-224
    • /
    • 2023
  • Disinfecting water containing pathogenic microbes is crucial to the food safety of fresh green agricultural products. The UV-activated peracetic acid (UV/PAA) treatment process is an efficient advanced oxidation process (AOP) and a versatile approach to disinfecting waterborne pathogens. However, its effects on plant growth remain largely unknown. This study found that low-dose UV/PAA treatment induced moderate oxidative stress but enhanced the innate immunity of Arabidopsis against Pseudomonas syringae pv. (Pst) DC3000. When applied as water sources, 5- and 10-ppm UV/PAA treatments slightly reduced biomass and root elongation in Arabidopsis seedlings grown under hydroponic conditions. Meanwhile, treatments of the same doses enhanced defense against Pst DC3000 infection in leaves. Accumulation of hydrogen peroxide and callose increased in UV/PAA-treated Arabidopsis samples, and during the post-infection period, UV/PAA-treated seedlings maintained vegetative growth, whereas untreated seedlings showed severe growth retardation. Regarding molecular aspects, priming-related defense marker genes were rapidly and markedly upregulated in UV/PAA-treated Arabidopsis samples. Conclusively, UV/PAA treatment is an efficient AOP for disinfecting water and protecting plants against secondary pathogenic attacks.

Biogenic Synthesis of Metallic Nanoparticles and Their Antibacterial Applications (금속 나노입자의 생체 합성과 항균적 적용)

  • Patil, Maheshkumar Prakash;Kim, Jong-Oh;Seo, Yong Bae;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.862-872
    • /
    • 2021
  • Recent studies on synthesis of metallic nanomaterials such as silver (Ag), gold (Au), platinum (Pt), cerium (Ce), zinc (Zn), and copper (Cu) nanoparticles (NPs) using plants and microbes are attracted researchers for their wide range of applications in the field of biomedical sciences. The plant contains abundant of bioactive contents such as flavonoids, alkaloids, saponins, steroids tannins and nutritionals components. Similarly, microbes produce bioactive metabolites, proteins and secretes valuable chemicals such as color pigments, antibiotics, and acids. Recently reported, biogenic synthesis of NPs in non-hazardous way and are promising candidates for biomedical applications such as antibacterial, antifungal, anti-cell proliferative and anti-plasmodia activity. All those activities are dose dependent, along with their shape and size also matters on potential of NPs. Microbes and plants are great source of metabolites, those useful in biomedical field, such metabolites or chemicals involved in synthesis of NPs in an ecofriendly way. NPs synthesized using microbes or plant materials are reveals more non-toxic, facile, and cost-effective compare to chemically synthesized NPs. In present review we are focusing on NPs synthesis using biological agents such as microbes (bacteria, fungi and algae) and plant, characterization using different techniques and their antibacterial applications on pathogenic Gram-positive and Gram-negative organisms.

Characteristics of digestive enzyme activity, antibiotic resistance, and pathogenicity of bacteria inhabited in animal feed resources (사료자원에 서식하는 세균의 소화효소활성, 항생제내성 및 병원성에 관한 특성)

  • Yi, Kwon Jung;Cho, Sang Seop;Kim, Soo-Ki
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • Among different types of spoilage, microbial contamination can cause feed decomposition, which results in decreases in feed intake and productivity, infection, and breeding disorder. During the storage time, various microbes have a chance to inoculate with depreciation of feed and to infect the animals. We investigated bacteria that inhabit diverse feed ingredients and complete feed which have been stored for a few months. We isolated and identified 30 genera and 62 species of bacteria. Among these 62 species, 21 species were of non-pathogenic bacteria, 18 species were of pathogenic bacteria, 9 species were of opportunistic pathogens, and 14 species were of unknown bacteria. Pantoea allii and 24 species showed proteolytic enzyme activity. We also confirmed that 6 species including Pseudomonas psychrotolerans showed ${\alpha}$-amylase activity, and 29 species including Burkholderia vietnamiensis showed cellulase activity. Microbacterium testaceum and 3 species showed resistance to Ampicillin, Kanamycin, Streptomycin, Gentamicin, Carbenicillin, and Erythromycin ($50{\mu}g/mL$). Using mealworm larvae (Tenebrio molitor L.) as a model for pathogenicity, we confirmed that 8 species including Staphylococcus xylosus had pathogenicity for mealworm larvae. Especially, Enterobacter hormaechei, Staphylococcus xylosus, and Staphylococcus hominis were reported as being pathogenic for humans. This research suggests that hygienic management of animal feed is essential because beneficial and harmful bacteria can inhabit animal feed differently during storage and distribution.

Antimicrobial activity by Paenibacillus elgii DS381 and its antimicrobial substances against microbial residents on human skin and pathogenic bacteria (인간 피부 상재균과 병원성 세균에 대한 Paenibacillus elgii DS381과 그 항균물질의 항균활성)

  • Lee, Da-Sol;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.244-253
    • /
    • 2018
  • This study was carried out to evaluate effects of antimicrobial substances produced by isolated soil bacteria. Among two thousands of bacterial isolates Paenibacillus elgii DS381 exhibited high antimicrobial activities against several microbial residents on human skin and pathogenic bacteria. DS381 showed 15.3~26.0 mm inhibition zone diameter against all target bacteria and yeast in agar well diffusion test. Antimicrobial peptide produced by DS381 indicated low minimum inhibitory concentration (0.039-5.000 mg/ml). DS381 produced biosurfactant such as lipopeptide, and surface tension of culture supernatant of DS381 reduced from 60.0 to 40.3 mN/m. DS381 also showed $1.56{\pm}0.13U/ml$ of chitinase activity. These results suggest that Paenibacillus elgii DS381 may be utilized as an efficient biocontrol agent against some important human skin microbes and pathogenic bacteria.

A Study on the Air Counts and the Infection of Maternity in n General Hospital (병실 낙하균 및 산모감염에 관한 연구)

  • 이남희
    • Journal of Korean Academy of Nursing
    • /
    • v.9 no.2
    • /
    • pp.17-26
    • /
    • 1979
  • This research is to prevent the infection of maternity in the hospital by examining the microbes contaminations in maternity through airbone microbes and those who are engaged in the ward of O.B. & G.Y. and to furnish the basic data available to hospital management. The bacterial growth of airbone microbes contaminations in nosocomial air and who thor the nasal cavity of passers by (doctors, nurses, parturient women) who went to the ward of O.B. & G.Y. contaminated or not were examined in“E”Univ. Hospital from July to August, 1979 by using thioglycollate broths and agar plates. The following results were obtained: 1. The average colony number of airborne microbes revealed as follows the pediatric ward (36 colonies), the internal ward (33 colonies), the ward of O.B. & G.Y. (30 colonies), the ward of surgery (24 colonies), delivery-waiting room (11 colonies), and the delivery room (3 colonies). 2. The bacterial growth beforenoon differed from that of afternoon. Namely, the latter (24 colonies) was higher than the former (21 colonies). 3. The type of strains isolated from the air of the ward revealed staphylococci (82%), Gram negative bacilli (18%), fungi (17%), Gram positive diplococci (13%), and Bacillus subtilis (2.8%). 4. The strains isolated in the delivery-waiting room revealed staphylococci (66.7%), Gram negative bacilli (33.6%), and revealed staphylococci (75%), Gram positive diplococci (8.3%), and fungi (8.3%), in delivery room. 5. Most of strains isolated in the ward of O.B. & G.Y. revealed staphylococci (100.0%), Gram positive diplococci (8.3%), and Gram negative bacilli (6.7%). 6. The strain isolated in the surgical ward revealed staphylococci (91.7%), fungi (33.3%), Gram positive diplococci (25%), Gram negative bacilli (25%) and Bacillus subtilis (8.3%). 7. The strain isolated in the pediatric ward revealed staphylococci (75%), fungi (25%), Gram positive diplococci (8.3%), Bacillus subtilis (8.3%), and Gram negative bacilli (8.3%). 8. The strain isolated in the internal ward revealed staphylococci (91.7%), fungi (33.3%), Gram positive diplococci (25%), and negative bacilli (16.7%). The strains isolated from the nasal cavity of those doctors and nurses who and enaged in the ward of O.B. & G.Y. revealed staphylococci (80%), Bacillus subtilis (10%), and Gram negative bacilli (10%), from doctors and Gram positive diplococci (10%), instead of Gram negative bacilli (10%), from nurses. 10. The strain isolated from nasal cavity of parturient women on admission revealed staphylococci (90%), and Gram negative bacilli (10%), but after admission revealed staphylococci (70%), Gram positive diplococci (10%), and Gram negative bacilli (10%). 11. Of the total 91 staphylococci isolated from the air of the ward, the Coagulase pastive was 36 (39.6%), and the negative 55 (60.4%), As a result of the coagulase experiment of the staphylococci isolated from the nasal cavity of those who are engaged in the ward of O.B. & G.Y. all were revealed as negative that belonged to non-pathogenic. 12. Consequence of the biochemic examination of the gram negative bacilli isolated from the air of the ward the aerobacter aerogens revealed was (16.7%) E-coli 5% in the nasal cavity of those came and went to the of O.B. & G.Y. and Aerobacter aerogens 7.5%.

  • PDF