• 제목/요약/키워드: Pathogenic Bacteria

검색결과 1,272건 처리시간 0.023초

식물 추출 정유가 어류의 병인체에 미치는 항미생물 효과 (Effect of Plant Extracted Essential Oil on Antimicrobial Activity for Fish Phathogens)

  • 이근광;이정열
    • 한국양식학회지
    • /
    • 제14권2호
    • /
    • pp.81-87
    • /
    • 2001
  • Antimicrobial activity of the essential oil extracted from plants Artemisia princeps var. orientalis, Thuja orientalis and Chamaecyparis obtusa were tested against selected pathogenic bacteria and fungi of fish. At the concentrations above 500ppm, ingibitory effect of the oil of A. princeps var. orientalis was at its peak against Aeromonas hydrophila ATCC 14715, A. hydrophila CF-2, A. salmonicida ATCC 14174 and A. salmonicida EL-1 but the bacteria Edwardsiella tarda KBF-1, Vibrio anguillarum ATCC19264, V. ordalii ATCC33509 and Streptococcus sp. were insensitive. Likewise, the oil extract of T. orientalis showed the highest inhibitory activity against V. ordalii ATCC33509, E. tarda ECK-1, and E. tarda KBF-1 at 300ppm; however the activity was highest at 500ppm or A. hydrophila ATCC14715, A. hydrophila CF-2, A. salomonicida ATCC14174, A. salmonicida EL-1 and Streptococcus sp. SF-1. With increasing dose of C. obtusa oil, the inhibitory activity became more and more effective against A. hydrophila CF-2, A. salomonicida ATCC14174, E. tarda ECK-1 and Streptococcus sp. SF-1, but A. hydrophila ATCC14174, A. salmonicida EL-1, E. tarda KBF-1, V. anguillarum ATCC19264, V. ardalii ATCC33509 and gram positive bacteria (Streptococcus sp.) were somewhat resistant. A. princeps var. orientalis, T. orientalis and C. obtusa were also tested against Saprolegnia sp. at the oil concentrations of 10, 100, 500, 1,000, 1,500 and 2,000ppm. The inhibitory effect of the oil on the inhibit the mycelial growth of Saprolegnia sp. at 10ppm and completely inhibited at over 500ppm.

  • PDF

Interaction of Apidaecin Ib with Phospholipid Bilayers and its Edwardsiella Species-specific Antimicrobial Activity

  • Seo, Jung-Kil;Go, Hye-Jin;Moon, Ho-Sung;Lee, Min-Jeong;Hong, Yong-Ki;Jeong, Hyun-Do;Nam, Bo-Hye;Park, Tae-Hyun;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.115-122
    • /
    • 2012
  • Apidaecin Ib had strong antimicrobial activity against several tested Gram-negative bacteria including Escherichia coli, Enterobacter cloacae, and Shigella flexneri (MECs; $0.3-1.5{\mu}g/mL$), but showed no activity against all the tested Gram-positive bacteria including Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and one yeast, Candida albicans (MECs; > $125{\mu}g/mL$). Interestingly, this peptide showed potent antibacterial activity only against Edwardsiella species (MECs; $0.6-3.6{\mu}g/mL$) among the tested fish pathogenic bacteria through a bacteriostatic process and showed no significant hemolytic activity. Apidaecin Ib took an unordered structure in all environments and also had very weak membrane perturbation activity even at $25{\mu}M$. Anti-Edwardsiella activity of apidaecin Ib is stronger than those of other antimicrobial polypeptides or antibiotics, but its activity is salt-sensitive. These results suggest that apidaecin Ib has Edwardsiella speciesspecific antibacterial activity and could be applied as new preventive or control additives for Edwardsiella species infection in freshwater fish aquaculture.

Free Living Amoeba-Bacteria Interactions: Analysis of Escherichia coli Interactions with Nonpathogenic or Pathogenic Free Living Amoeba

  • Jung, Suk-Yul
    • 대한의생명과학회지
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2011
  • Free-living amoebae ingest several kinds of bacteria. In other words, the bacteria can survive within free-living amoeba. To determine how Escherichia coli K1 isolate causing neonatal encephalitis and non-pathogenic K12 interact with free-living amoebae, e.g., Acanthamoeba castellanii (T1), A. astronyxis (T7), Naegleria fowleri, association, invasion and survival assays were performed. To understand pathogenicity of free-living amoebae, in vitro cytotoxicity assay were performed using murine macrophages. T1 destroyed macrophages about 64% but T7 did very few target cells. On the other hand, N. fowleri which needed other growth conditions rather than Acanthamoeba destroyed more than T1 as shown by lactate dehydrogenase (LDH) release assay. In association assays for E. coli binding to amoebae, the T7 exhibited significantly higher association with E. coli, compared with the T1 isolates (P<0.01). Interestingly, N. fowleri exhibited similar percentages of association as T1. Once E. coli bacteria attach or associate with free-living amoeba, they can penetrate into the amoebae. In invasion assays, the K1 (0.67%) within T1 was observed compared with K12 (0%). E. coli K1 and K12 exhibited high association with N. fowleri and bacterial CFU. To determine the fate of E. coli in long-term survival within free-living amoebae, intracellular survival assays were performed by incubating E. coli with free-living amoebae in PBS for 24 h. Intracellular E. coli K1 within T1 (2.5%) and T7 (1.8%) were recovered and grown, while K12 were not found. N. fowleri was not invaded and here it was not recovered.

Photodynamic Therapy Using Topically Applied 5-ALA, MAL and CLC for Canine Otitis Externa

  • Lee, Min-Ho;Song, Hee-Sung;Son, Wongeun;Yun, Young-Min
    • 한국임상수의학회지
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2020
  • Canine otitis externa is a common disorder in small animal practice with prevalence up to 20%. In a large percentage of cases, canine otitis externa is a chronic and recurrent disease also associated with drug-resistant bacteria that is difficult to treat with traditional antibiotics. Photodynamic therapy (PDT) is a new strategy to exterminate pathogenic microorganisms such as bacteria and fungi. The purpose of this study was to investigate the effectiveness of photodynamic therapy against canine otitis externa using three photosensitizer (PS); 5-Aminolevulinic acid (5-ALA) and Methyl aminolevulinic acid (MAL) with semiconductor laser diode (SLD, 635nm of wave length), Chlorophyll-lipoid complex (CLC) with light-emitting diode (LED, 660nm of wave length). After PDT, dogs showed improved Otitis Index Score (OTIS) in swelling, exudate, odor, and pain. A result of the cytology test revealed decrease of bacteria and malassezia count in the oil immersion field and colony forming units count. PDT was effective as a bacteriocide of methicillin-resistant Staphylococcus pseudintermedius (MRSP) and a fungicide of Malassezia pachydermatis. MAL and 5-ALA were more effective PS against canine otitis externa than CLC. These results suggest that PDT is a new strategy to exterminate pathogenic microorganisms such as bacteria and fungi. PDT can be considered as a new therapeutic approach for canine recurrent otitis externa and a countermeasure to drug resistance that is a disadvantage of traditional antibiotic and antifungal therapy.

Potential Control of Foodborne Pathogenic Bacteria by Pediococcus pentosaceus and Lactobacillus graminis Isolated from Fresh Vegetables

  • Gonzalez-Perez, C.J.;Vargas-Arispuro, I.;Aispuro-Hernandez, E.;Aguilar-Gil, C.L.;Aguirre-Guzman, Y.E.;Castillo, A.;Hernandez-Mendoza, A.;Ayala-Zavala, J.F.;Martinez-Tellez, M.A.
    • 한국미생물·생명공학회지
    • /
    • 제47권2호
    • /
    • pp.183-194
    • /
    • 2019
  • The consumption of fresh vegetables has been related to recurrent outbreaks of foodborne diseases (FBD) worldwide. Therefore, the development of effective alternative technologies is necessary to improve the safety of these products. This study aimed to isolate and identify epiphytic lactic acid bacteria (LAB) from fresh fruits and leafy vegetables and characterize their antagonistic capacity due to their ability to produce bacteriocins or antibacterial compounds. For this, 92 LAB isolates from fruits and leafy vegetables were screened for antagonistic activity. Two strains with the highest and broadest antagonistic activities were selected for further characterization; one from cantaloupe melon (strain CM175) and one from cilantro leaves (strain C15). The cell-free supernatants (CFS) of CM175 and C15 were found to exhibit antagonistic activity against FBD-causing pathogens. The CM175 and C15 strains were identified as Pediococcus pentosaceus and Lactobacillus graminis, respectively. Notably, the P. pentosaceus CM175 CFS stopped the growth of Salmonella Typhimurium, Salmonella Saintpaul, Staphylococcus aureus, and Listeria monocytogenes, and delayed Escherichia coli O157:H7 growth. Moreover, L. graminis C15 CFS delayed the growth of all indicator pathogens, but did not completely stop it. Organic acids and bacteriocin-like molecules were determined to be possibly exerting the observed antagonistic activity of the identified LAB strains. Thus, application of the antagonistic compounds produced by Pediococcus pentosaceus and Lactobacillus graminis could be a novel and ecological strategy in developing antimicrobial biopreservatives for the food industry and mitigating FBD by reducing the biological contamination in fruit and vegetable orchards, mainly via their potential in controlling both gram-negative and gram-positive pathogenic bacteria.

Immunomodulatory Effects of Bifidobacterium spp. and Use of Bifidobacterium breve and Bifidobacterium longum on Acute Diarrhea in Children

  • Choi, Yae Jin;Shin, Seon-Hee;Shin, Hea Soon
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1186-1194
    • /
    • 2022
  • The intake of probiotic lactic acid bacteria not only promotes digestion through the microbiome regulated host intestinal metabolism but also improves diseases such as irritable bowel syndrome and inflammatory bowel disease, and suppresses pathogenic harmful bacteria. This investigation aimed to evaluate the immunomodulatory effects in intestinal epithelial cells and to study the clinical efficacy of the selected the Bifidobacterium breve and Bifidobacterium longum groups. The physiological and biochemical properties were characterized, and immunomodulatory activity was measured against pathogenic bacteria. In order to find out the mechanism of inflammatory action of the eight viable and sonicated Bifidobacterium spp., we tried to confirm the changes in the pro-inflammatory cytokines (TNF-α, interleukin (IL)-6, IL-12) and anti-inflammatory cytokine (IL-10), and chemokines, (monocyte chemoattractant protein-1, IL-8) and inflammatory enzymatic mediator (nitric oxide) against Enterococcus faecalis ATCC 29212 infection in Caco-2 cells and RAW 264.7 cells. The clinical efficacy of the selected B. breve and B. longum group was studied as a probiotic adjuvant for acute diarrhea in children by oral administration. The results showed significant immunomodulatory effects on the expression levels of TNF-α, IL-6, IL-12, MCP-1, IL-8 and NO, in sonicated Bifidobacterium extracts and viable bifidobacteria. Moreover, each of the Bifidobacterium strains was found to react more specifically to different cytokines. However, treatment with sonicated Bifidobacterium extracts showed a more significant effect compared to treatment with the viable bacteria. We suggest that probiotics functions should be subdivided according to individual characteristics, and that personalized probiotics should be designed to address individual applications.

Lysinabacillus fusiformis and Paenibacillus alvei Obtained from the Internal of NasutitermesTermites Revealed Their Ability as Antagonist of Plant Pathogenic Fungi

  • Fitriana, Yuyun;Tampubolon, Desi Apriani Teresa;Suharjo, Radix;Lestari, Puji;Swibawa, I Gede
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.449-460
    • /
    • 2022
  • This study was performed to reveal phenotypic characters and identity of symbiont bacteria of Nasutitermes as well as investigate their potential as antagonist of plant pathogenic fungi. Isolation of the symbiont bacteria was carried out from inside the heads and the bodies of soldier and worker termite which were collected from 3 locations of nests. Identification was performed using phenotypic test and sequence of 16S ribosomal DNA (16S rDNA). Antagonistic capability was investigated in the laboratory against 3 phytopathogenic fungi i.e., Phytophthora capsici, Ganoderma boninense, and Rigidoporus microporus. Totally, 39 bacterial isolates were obtained from inside the heads and the bodies of Nasutitermes. All the isolates showed capability to inhibit growth of P. capsici, however, 34 isolates showed capability to inhibit growth of G. boninense and 32 isolates showed capability to inhibit growth of R. microporus. Two bacterial strains (IK3.1P and 1B1.2P) which showed the highest percentage of inhibition were further identified based on their sequence of 16S rDNA. The result showed that 1K3.1P strain was placed in the group of type strain and reference strains of Lysinibacillus fusiformis meanwhile 1B1.2P strain was grouped within type strain and reference strains Paenibacillus alvei. The result of this study supply valuable information on the role of symbiont bacteria of Nasutitermes, which may support the development of the control method of the three above-mentioned phytopathogenic fungi.

콩 잎에 서식하는 세균 및 콩나물 부패균의 밀도 변화 (Population Density Changes of Bacteria and Soybean Sprout Rotting Bacteria on Soybean Leaves)

  • 최재을;이은정;신철우
    • 한국자원식물학회지
    • /
    • 제12권2호
    • /
    • pp.152-160
    • /
    • 1999
  • 1. 콩잎의 세균밀도는 4.60$\times$$10^2$~ 9.10$\times$$10^{5}$CFU/$\textrm{cm}^2$으로, 생육단계가 진전됨에 따라 세균밀도가 증가하는 경향이었다. 2. 콩나물 부패 세균의 밀도는 콩잎에서 0~5.00$\times$$10^3$CFU/$\textrm{cm}^2$으로, 부패세균의 밀도는 생육단계에 관련이 없었으나 재배지역과는 관련이 있었다. 3. 나물 콩 품종과 콩나물 부패세균의 밀도는 품종과 관련이 적었으며 생육단계와 작물의 부위에 따라 변이가 심하였다. 4. 콩잎에서 분리된 콩나물 부패세균은 Erwinia cypripedii, E. carotovora subsp. carotovora, Xanthomonas campestris pv. glycines, Staphylococcus sp., Micrococcus sp. 이며, E. carotovora subsp. carotovora, X. campestris pv. glycines가 밀도가 높았다.다.

  • PDF

한국 전통발효식품에서 분리한 유산균의 프로바이오틱스 특성 및 건강기능성 연구 (The Potential Probiotic and Functional Health Effects of Lactic Acid Bacteria Isolated from Traditional Korean Fermented Foods)

  • 온정은;설민경;배은영;조영제;정희영;김병오
    • 생명과학회지
    • /
    • 제30권7호
    • /
    • pp.581-591
    • /
    • 2020
  • 본 연구에서는 한국의 전통발효식품인 식해, 열무김치, 비지에서 분리한 유산균의 프로바이오틱스로써의 사용 가능성을 확인하였다. 분리된 유산균 중 pH 2.5의 산에서 60% 이상의 생존율을 나타내는 Pediococcus inopinatus BZ4, Lactobacillus plantarum SH1, Lactobacillus brevis SH14, Pediococcus pentosaceus YMT1, Leuconostoc mesenteroides YMT2는 0.3% 담즙산에서도 모두 우수한 생존율을 나타내어 이 5종을 선별하여 실험을 진행하였다. 간접적으로 유용미생물의 군집화 및 병원성 세균의 부착을 저해하는 자가 응집 및 상호 응집 실험에서 다섯 개의 유산균은 강력한 응집능을 나타내었다. 유기용매를 이용한 세포 표면 소수성 실험에서 3가지 용매에 모두 부착성을 나타내어 세포 표면의 높은 소수성을 보여주었으며 이는 간접적으로 장세포에 부착할 수 있는 세포 부착능이 우수하다는 것을 보여준다. 또한, DPPH, ABTS 라디컬 소거능 측정, 지질 과산화억제능 실험에서도 선별된 유산균의 cell-free supernatant 및 intracellular cell-free extract는 항산화 활성을 나타내었다. 마지막으로 진균인 C. albicans ATCC 10231를 제외한 4가지 병원성세균(E. coli KCTC 2571, H. pylori HPKCTC B0150, L. monocytogenes KCTC 13064, S. aureus KCTC 1916)에서 모두 항균활성이 나타남을 확인하였다. 상기 실험결과를 바탕으로, 분리된 유산균은 항산화, 항균활성을 보유하고 있는 프로바이오틱스 제제로써 활용이 가능할 것으로 기대되며 이는 기초적인 실험으로써 산업화를 위한 임상검증 등의 추가적인 연구가 필요하다고 사료된다.

Essential Oil Prepared from Cymbopogon citrates Exerted an Antimicrobial Activity Against Plant Pathogenic and Medical Microorganisms

  • Jeong, Mi-Ran;Park, Pyeong-Beom;Kim, Dae-Hyuk;Jang, Yong-Suk;Jeong, Han-Sol;Choi, Sang-Hoon
    • Mycobiology
    • /
    • 제37권1호
    • /
    • pp.48-52
    • /
    • 2009
  • Essential oils are mixtures of volatile, lipophilic compounds originating from plants. Some essential oils have useful biological activities including antimicrobial, spasmolytic, antiplasmodial, and insect-repelling activities. In this study, we tested the antimicrobial activity of essential oil prepared from the aromatic plant, Cymbopogon citrates, against three important plant pathogenic and medical microorganisms, Pectobacterium carotovorum, Colletotrichum gloeosporioides, and Aspergillus niger. It effectively inhibited the growth of the bacterium, Pectobacterium carotovorum, in a dose-dependent fashion, and 0.5% of the oil inhibited the growth of bacteria completely. Similarly, the essential oil inhibited the growth of plant pathogenic fungus, Colletotrichum gloeosporioides, and the addition of 1% of essential oil completely inhibited the growth of fungus even after 5 days of culture. Finally, it effectively inhibited the growth of the medically and industrially important fungal species, Aspergillus spp. These results suggest that the essential oil from Cymbopogon citrates may be an environmentally safe alternative to inhibit antimicrobial agents for various uses.