Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.7.581

The Potential Probiotic and Functional Health Effects of Lactic Acid Bacteria Isolated from Traditional Korean Fermented Foods  

Ohn, Jeong-Eun (School of Food Science, Kyungpook National University)
Seol, Min-Kyeong (School of Food Science, Kyungpook National University)
Bae, Eun-Yeong (School of Food Science, Kyungpook National University)
Cho, Young-Je (School of Food Science, Kyungpook National University)
Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
Kim, Byung-Oh (School of Food Science, Kyungpook National University)
Publication Information
Journal of Life Science / v.30, no.7, 2020 , pp. 581-591 More about this Journal
Abstract
This study investigated the probiotic properties and physiological activities of Korean fermented foods such as sikhae, young radish kimchi, and bean-curd dregs. Among the isolated lactic acid bacteria, Pediococcus inopinatus BZ4, Lactobacillus plantarum SH1, Lactobacillus brevis SH14, Pediococcus pentosaceus YMT1, and Leuconostoc mesenteroides YMT6 demonstrated a greater than 60% survival rate at pH 2.5, along with an excellent survival rate even at 0.3% bile acid. These five bacteria showed strong flocculation ability in autoaggregation and coaggregation tests, indirectly clustering useful micro-organisms and inhibiting the attachment of pathogenic bacteria. In a cell surface hydrophobicity test, these bacteria showed adhesion to three solvents (ethyl acetate, chloroform, and xylene) and high hydrophobicity, thereby indicating excellent indirect cell adhesion to intestinal cells. The cell-free supernatants and intracellular extracts of the five lactic acid bacteria showed antioxidative activity in the form of 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability and lipid peroxidation inhibition. Antimicrobial activities were also observed in four pathogenic bacteria, namely E. coli KCTC 2571, H. pylori HPKCTC B0150, L. monocytogenes KCTC 13064, and S. aureus KCTC 1916. These results demonstrate that these five lactic acid bacteria could be used as probiotics with antioxidant and antimicrobial properties.
Keywords
Antimicrobial activity; antioxidative activity; lactic acid bacteria; probiotics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chang, Y. H., Kim, J. K., Kim, H. J., Yoon, J. H., Kim, W. Y., Choi, Y. W., Lee, W. J., Kim, Y. B. and Park, Y. H. 1999. Characteristics of Lactobacillus reuterii BSA-131 isolated from swine intestine. J. Kor. Appl. Microbiol. Biotechnol. 27, 23-27.
2 Clements, A., Young, J. C., Constantinou, N. and Frankel, G. 2012. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes. 3, 71-87.   DOI
3 Douglas, L. J. 2003. Candida biofilms and their role in infection. Trends Microbiol. 11, 30-36.   DOI
4 Doyle, R. J. and Rosenberg, M. 1995. Measurement of microbial adhesion to hydrophobic substrates. Methods Enzymol. 253, 542-550.   DOI
5 Enomoto, H., Watanabe, H., Nishikura, K., Umezawa, H. and Asakura, H. 1998. Topographic distribution of Helicobacter pylori in the resected stomach. Eur. J. Gastroenterol. Hepatol. 10, 473-478.   DOI
6 Farber, J. M., Sanders, G. W., Dunfield, S. and Prescott, R. 1989. The effect of various acidulants on the growth of Listeria monocytogenes. Lett. Appl. Microbiol. 9, 181-183.   DOI
7 Fukushima, Y., Kawata, Y., Hara, H., Terada, A. and Mitsuoka, T. 1998. Effect of a probiotic formula on intestinal immunoglobulin a production in healthy children. Int. J. Food Microbiol. 30, 39-44.
8 Sybesma, W., Hugenholtz, J., de Vos, W. M. and Smid, E. J. 2006. Safe use of genetically modified lactic acid bacteria in food, bridging the gap between consumers, green groups, and industry. Electron. J. Biotechnol. 9, 424-448.
9 Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L. and Fowler, V. G. Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603-661.   DOI
10 Vrese, M., Stegelmann, A., Ritcher, B., Fenselau, S., Laue, C. and Schrezenmeir, J. 2011. Probiotics: compensation for lactase insufficiency. Am. J. Clin. Nutr. 73, 421-429.
11 Collado, M. C., Isolauri, E., Salminen, S. and Sanz, Y. 2009. The impact of probiotic on gut health. Curr. Drug Metab. 10, 68-78.   DOI
12 Brand-Williams, W., Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25-30.   DOI
13 Chiang, S. S. and Pan, T. M. Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Appl. Microbiol. Biotechnol. 93, 903-916.   DOI
14 Cho, K. M., Math, R. K., Hong, S. Y., AsrafulIslama, S. M., Mandannaa, D. K., Cho, J. J., Yun, M. G., Kim, J. M. and Yun, H. D. 2009. Iturin produced by Bacillus pumilus HY1 from Korea soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Cont. 20, 402-406.   DOI
15 Cross, M. L. 2002. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol. Med. Microbiol. 34, 245-53.   DOI
16 De-Vrese, M. and Schrezenmeir, J. 2008. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 111, 1-66.
17 Garcia-Ruiz, A., Gonzalez de Llano, D., Esteban-Fernandez, A., Requena, T., Bartolome, B. and Victoria Moreno-Arribas, M. 2014. Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol. 44, 220-225.   DOI
18 Kong, B. H., Zhang, H. Y. and Xiong, Y. L. 2010. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action. Meat Sci. 85, 772-778.   DOI
19 Javadi, A., Shamaei, M., Ziazi, L. M., Pourabdollah, M., Dorudinia, A., Seyedmehdi, S. M. and Karimi1, S. 2014. Qualification study of two genomic DNA extraction methods in different clinical samples. Tanaffos 13, 41-47.
20 Kim, H. S. and Ham, J. S. 2003. Antioxidative ability of lactic acid bacteria. Kor. J. Food Sci. Ani. Resour. 23, 186-192.
21 Ozlem, O., Fadime, K. and Ingolf, F. N. 2011. A probiotic bacterium, Pediococcus pentosaceus OZF, isolated from human breast milk produces pediocin AcH/PA-1. Afr. J. Food Sci. 10, 2070-2079.
22 Oliveira M. N., Sodini, I., Remeuf, F. and Corrieu, G. 2001. Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria. Int. Dairy J. 11, 11-12.
23 Pellegrin, N., Roberta, R., Min, Y. and Catherine, R. E. 1998. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method. Enzymol. 299, 379-389.
24 Petri, A., Pfannebecker, J., frohlich, J. and Konig, H. 2013. Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol. 33, 48-54.   DOI
25 Raouf, T., Marion, B., Marielle, G. and Jean-Paul, V. 2013. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J. Med. Microbiol. 62, 637-649.   DOI
26 Tokatli, M., Gulgor, G., BagderElmaci, S., ArslankozIsleyen, N. and Ozcelik, F. 2015. In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Biomed. Res. Int. 2015, 315819.