• Title/Summary/Keyword: Pathogen spread

Search Result 110, Processing Time 0.026 seconds

A Reliable Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Apple stem grooving virus in Pear

  • Lee, Hyo-Jeong;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.92-97
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a high-risk viral pathogen that infects many types of fruit trees, especially pear and apple, and causes serious economic losses across the globe. Thus, rapid and reliable detection assay is needed to identify ASGV infection and prevent its spread. A reliable reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed, optimize, and evaluated for the coding region of coat protein of ASGV in pear leaf. The developed RT-LAMP facilitated the simple screening of ASGV using visible fluorescence and electrophoresis. The optimized reaction conditions for the RT-LAMP were 63℃ for 50 min, and the results showed high specificity and 100-fold greater sensitivity than the reverse transcription polymerase chain reaction. In addition, the reliability of the RT-LAMP was validated using field-collected pear leaves. Furthermore, the potential application of paper-based RNA isolation, combined with RT-LAMP, was also evaluated for detecting ASGV from field-collected samples. These assays could be widely applied to ASGV detection in field conditions and to virus-free certification programs.

Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei

  • Pravin Kumran Nyanasegran;Sheila Nathan;Mohd Firdaus-Raih;Nor Azlan Nor Muhammad;Chyan Leong Ng
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.

Oomycete pathogens, red algal defense mechanisms and control measures

  • Xianying Wen;Giuseppe C. Zuccarello;Tatyana A. Klochkova;Gwang Hoon Kim
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.203-215
    • /
    • 2023
  • Oomycete pathogens are one of the most serious threats to the rapidly growing global algae aquaculture industry but research into how they spread and how algae respond to infection is unresolved, let alone a proper classification of the pathogens. Even the taxonomy of the genera Pythium and Olpidiopsis, which contain the most economically damaging pathogens in red algal aquaculture, and are among the best studied, needs urgent clarification, as existing morphological classifications and molecular evidence are often inconsistent. Recent studies have reported a number of genes involved in defense responses against oomycete pathogens in red algae, including pattern-triggered immunity and effector-triggered immunity. Accumulating evidence also suggests that calcium-mediated reactive oxygen species signaling plays an important role in the response of red algae to oomycete pathogens. Current management strategies to control oomycete pathogens in aquaculture are based on the high resistance of red algae to abiotic stress, these have environmental consequences and are not fully effective. Here, we compile a revised list of oomycete pathogens known to infect marine red algae and outline the current taxonomic situation. We also review recent research on the molecular and cellular responses of red algae to oomycete infection that has only recently begun, and outline the methods currently used to control disease in the field.

Outbreak of Fire Blight of Apple and Asian Pear in 2015-2019 in Korea (2015-2019년 국내 과수 화상병 발생)

  • Ham, Hyeonheui;Lee, Young-Kee;Kong, Hyun Gi;Hong, Seong Jun;Lee, Kyong Jae;Oh, Ga-Ram;Lee, Mi-Hyun;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.222-228
    • /
    • 2020
  • Erwinia amylovora, a causal bacterium of fire blight disease, is registered as a prohibited quarantine pathogen in Korea. To control the disease, the government should diagnose the disease, dig and bury the host trees when fire blight occurs. Fire blight was the first reported in 43 orchards of Anseong, Cheonan, and Jecheon in 2015, and 42.9 ha of host trees were eradicated. However, the disease spread to eleven cities, so that 348 orchards and 260.4 ha of host trees were eradicated until 2019. Fire blight of Asian pear occurred mainly in the southern part of Gyeonggi, and Chungnam province, on average of 29±9.2 orchards per year. And the age of the infected trees were mostly 20-30 years old. In apple trees, the disease occurred mainly in the northern part of Gyeonggi, Gangwon, and Chungbuk province, on average of 41±57.6 orchards per year, increased highly in 2018 and 2019. The age of infected apple trees were under 20 years old. Therefore, because the disease spread rapidly in young apple trees, spraying control agents to the trees in a timely manner and removing infected trees quickly are important to prevent the spread of fire blight in the orchard of immature trees.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Disease Severity of Bacterial Blight in Mixed Plantings of Rice Near-Isogenic Lines (벼흰빛잎마름병 저항성 근동질유전자계통 혼합재배에서 이병정도)

  • Mun Sik Shin;Ki Young Kim;Jae Kil Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.139-141
    • /
    • 2003
  • Disease severity, percent ripened grains, and yield were investigated in the seven mixtures by using near-isogenic lines having different resistant gene(s) to bacterial blight(BB) of rice. The seven mixtures including the four pure stands were inoculated with a 1:1:1 mixture of races $K_1$, $K_2$, and $K_3$ of BB. Among the seven mixtures-ML01, ML02, ML03, MLl2, MLl3, ML23 and ML0123-, disease severiety, percent ripened grains, and yield of ML01 and ML12, respectively did not show significant difference with those of mean values of their components. But degree of disease severity of the other mixtures, respectively -ML02, ML03, MLl3, ML23, and ML0123-was less than the mean of their components. Percent ripened grains and yield of them were higher than those of mean of their components. ML03, MLl3, ML23 and ML0123 comprised of the equal amount of two or four components having different resistant gene, these mixtures appeared to be a desirable combination for delaying spread of the pathogen, stabilizing of the race structure of the pathogen population, and extending durability of a cultivar with monogenic resistance.

First Report on the Shoot Blight Disease of Gaenari (Forsythia koreana) Caused by Septotinia sp. in Korea (Septotinia sp.에 의한 개나리 가지마름병(가칭) 발생)

  • Ji Hye Woo;Mikyeong Kim;Kun-Woo Lee;Sang-sup Han;Byeongjin Cha
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.234-242
    • /
    • 2023
  • In early spring, water-soaked lesions appeared on the petals and leaves of gaenari (Forsythia koreana), and the tissues were necrotic and dry. Cankers appeared on the infected branches around late spring and the above part of a branch withered and died. However, it was very rare that the base of the cankered-branch died. The identical fungi were isolated from the lesions on various tissues, and they grew with white colonies on potato dextrose agar medium. The fungus grew most actively at 23℃ and produced many sclerotia of various sizes. In a pathogenicity assay in which mycelial and sclerotial suspensions were inoculated on each organ of forsythia, it was found that the pathogen infects the flower only, but not the leaves or branches. Symptoms on the flowers spread to the next leaves and branches over time and the infected branches were eventually withered. To identify the isolates, DNA sequences of four phylogenetic markers including ITS, LSU, Tub2, and CAL were analyzed and all isolates were identified as a species in the genus Septotinia. This is not only the first report of gaenari (forsythia) shoot blight caused by the fungus Septotinia sp., but also the first report on the genus Septotinia as a plant pathogen in Korea.

Stem Rot of Pearl Millet Prevalence, Symptomatology, Disease Cycle, Disease Rating Scale and Pathogen Characterization in Pearl Millet-Klebsiella Pathosystem

  • Vinod Kumar Malik;Pooja Sangwan;Manjeet Singh;Pavitra Kumari;Niharika Shoeran;Navjeet Ahalawat;Mukesh Kumar;Harsh Deep;Kamla Malik;Preety Verma;Pankaj Yadav;Sheetal Kumari;Aakash;Sambandh Dhal
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • The oldest and most extensively cultivated form of millet, known as pearl millet (Pennisetum glaucum (L.) R. Br. Syn. Pennisetum americanum (L.) Leeke), is raised over 312.00 lakh hectares in Asian and African countries. India is regarded as the significant hotspot for pearl millet diversity. In the Indian state of Haryana, where pearl millet is grown, a new and catastrophic bacterial disease known as stem rot of pearl millet spurred by the bacterium Klebsiella aerogenes (formerly Enterobacter) was first observed during fall 2018. The disease appears in form of small to long streaks on leaves, lesions on stem, and slimy rot appearance of stem. The associated bacterium showed close resemblance to Klebsiella aerogenes that was confirmed by a molecular evaluation based on 16S rDNA and gyrA gene nucleotide sequences. The isolates were also identified to be Klebsiella aerogenes based on biochemical assays, where Klebsiella isolates differed in D-trehalose and succinate alkalisation tests. During fall 2021-2023, the disease has spread all the pearl millet-growing districts of the state, extending up to 70% disease incidence in the affected fields. The disease is causing considering grain as well as fodder losses. The proposed scale, consisting of six levels (0-5), is developed where scores 0, 1, 2, 3, 4, and 5 have been categorized as highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible disease reaction, respectively. The disease cycle, survival of pathogen, and possible losses have also been studied to understand other features of the disease.

Establishment of an Efficient Agrobacterium Transformation System for Eggplant and Study of a Potential Biotechnologically Useful Promoter

  • Claudiu Magioli;Ana Paula Machado da Rocha;Pinheiro, Marcia-Margis;Martins, Gilberto-Sachetto;Elisabeth Mansur
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • An efficient and reliable Agrobacterium transformation procedure based on TDZ (thidiazuron)-induced organogenesis was established and applied to six Brazilian eggp1ant varieties. Optimum transgenic plants recovery was achieved upon the study of the following parameters affecting transformation efficiency, using F-100 variety as a model: i) explant source; ii) pre-culture period; iii) physical state of the pre-culture medium and iv) coculture conditions. The highest frequency of kanamycin-resistant calli derived from leaf explants (5%) was obtained without a pre-culture period and co-cultivation for 24 h in liquid medium followed by five days on solid RM (regeneration medium). For cotyledon explants, best results were achieved upon a pre-culture of 24 h in liquid RM and a co-cultivation period of 24 h in liquid RM followed by three days in solid RM, resulting in a transformation Sequency of 22.7%. Kanamycin-resistant organogenic calli were also obtained from cultivars Emb, Preta Comprida, Round nose Shaded, Campineira and Florida Market. The expression pattern of an epidermis-specific promoter was studied using transformants expressing a chimaeric construct comprised by the promoter Atgrp-5 transcriptionally fused to the coding region of the gus gene. The expression pattern was similar to that previously observed in tobacco and Arabidopsis thaliana, with preferential expression at the epidermis and the stem phloem. These results support the idea that the Atgrp-5 promoter can be used to drive defense genes in these tissues, which are sites of pathogen interaction and spread, in programs for the genetic improvement of eggplant.

  • PDF

A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact

  • Kim, Gwang Hoon;Moon, Kyoung-Hyoun;Kim, Je-Yoon;Shim, Junbo;Klochkova, Tatyana A.
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.249-265
    • /
    • 2014
  • As with land crops, cultivated algae are affected by various diseases ranging from large outbreaks of a disease to chronic epiphytes, which may downgrade the value of the final product. The recent development of intensive and dense mariculture practices has enabled some new diseases to spread much faster than before. A new disease is reported almost every year, and the impact of diseases is expected to increase with environmental change, such as global warming. We observed the incidence of diseases in two Pyropia sea farms in Korea from 2011 to 2014, and estimated the economic loss caused by each disease. Serious damage is caused by the oomycete pathogens, Pythium porphyrae and Olpidiopsis spp., which decreased the productivity of the Pyropia sea farms. In Seocheon sea farms, an outbreak of Olpidiopsis spp. disease resulted in approximately US $1.6 million in loss, representing approximately 24.5% of total sales during the 2012-2013 season. The damage caused by green-spot disease was almost as serious as oomycete diseases. An outbreak of green-spot disease in the Seocheon sea farms resulted in approximately US $1.1 million in loss, representing 10.7% of total sales in the 2013-2014 season in this area. However, the causative agent of green-spot disease is still not confirmed. "Diatom felt" is regarded as a minor nuisance that does not cause serious damage in Pyropia; however, our case study showed that the economic loss caused by "diatom felt" might be as serious as that of oomycete diseases. Bacteria and cyanobacteria are indigenous members of epiphytic microbial community on Pyropia blades, but can become opportunistic pathogens under suitable environmental conditions, especially when Pyropia suffers from other diseases. A regular acid wash of the Pyropia cultivation nets is the most common treatment for all of the above mentioned diseases, and represents approximately 30% of the total cost in Pyropia sea farming. However, the acid wash is ineffective for some diseases, especially for Olpidiopsis and bacterial diseases.