DOI QR코드

DOI QR Code

Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei

  • 투고 : 2022.07.15
  • 심사 : 2022.10.11
  • 발행 : 2023.01.28

초록

The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.

키워드

과제정보

This work is supported by research grants from the Ministry of Higher Education (MoHE) Malaysia (FRGS/1/2018/STG04/UKM/02/3) and Universiti Kebangsaan Malaysia (Geran Universiti Penyelidikan (GUP), GUP-2021-069). Graphical abstract and Figure 1 were created using BioRender.com. Part of Figure 2 was drawn by using pictures from Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

참고문헌

  1. Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J. 2021. Hijacking of the Host's Immune Surveillance Radars by Burkholderia pseudomallei. Front. Immunol. 12: 718719. 
  2. Wiersinga WJ, Virk HS, Torres AG, et al. 2018. Melioidosis. Nat. Rev. Dis. Primers 4: 17108. 
  3. Yip C-H, Ghazali A-K, Nathan S. 2020. Burkholderia pseudomallei pathogenesis and survival in different niches. Biochem. Soc. Trans. 48: 569-579.  https://doi.org/10.1042/BST20190836
  4. Panomket P, Wongsana P, Wanram S, Wongratanacheewin S. 2017. Burkholderia pseudomallei biofilm plays a key role in chronic inflammation in C57BL/6 mice. Southeast Asian J. Trop. Med. Public Health 48: 73-82. 
  5. Duangurai T, Indrawattana N, Pumirat P. 2018. Burkholderia pseudomallei adaptation for survival in stressful conditions. Biomed Res. Int. 2018: 3039106. 
  6. Willcocks SJ, Cia F, Francisco AF, Wren BW. 2020. Revisiting aminocoumarins for the treatment of melioidosis. Int. J. Antimicrob. Agents 56: 106002. 
  7. Schwarz S, Van Dijck P. 2017. Trehalose metabolism: A sweet spot for Burkholderia pseudomallei virulence. Virulence 8: 5-7.  https://doi.org/10.1080/21505594.2016.1216295
  8. Limmathurotsakul D, Paeyao A, Wongratanacheewin S, Saiprom N, Takpho N, Thaipadungpanit J, et al. 2014. Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis. Clin. Microbiol. Infect. 20: O854-O856.  https://doi.org/10.1111/1469-0691.12614
  9. Ghosh R, Barman S, Mandal NC. 2019. Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Sci. Rep. 9: 5477. 
  10. Vestby LK, Gronseth T, Simm R, Nesse LL. 2020. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9: 59. 
  11. Flemming H-C. 2016. EPS-Then and now. Microorganisms 4: 41. 
  12. Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y. 2018. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med. 11: 25-32.  https://doi.org/10.2147/IJGM.S153268
  13. Yan J, Bassler BL. 2019. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26: 15-21.  https://doi.org/10.1016/j.chom.2019.06.002
  14. Peng N, Cai P, Mortimer M, Wu Y, Gao C, Huang Q. 2020. The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol. 20: 115. 
  15. Tolker-Nielsen T. 2015. Biofilm Development. Microbiol. Spectr. 3: 51-66.  https://doi.org/10.1128/microbiolspec.MB-0001-2014
  16. Mcferrin A, Engineering C, Building JEB, Texas A. 2010. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling thomas. Environ. Microbiol. 11: 1-15.  https://doi.org/10.1111/j.1462-2920.2008.01768.x
  17. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3: a010306. 
  18. Duangurai T, Indrawattana N, Pumirat P. 2018. Burkholderia pseudomallei adaptation for survival in stressful conditions. Biomed Res. Int. 2018: 3039106. 
  19. Kunyanee C, Kamjumphol W, Taweechaisupapong S, Kanthawong S, Wongwajana S, Wongratanacheewin S, et al. 2016. Burkholderia pseudomallei biofilm promotes adhesion, internalization and stimulates proinflammatory cytokines in human epithelial A549 cells. PLoS One 11: e0160741. 
  20. Castelo-Branco DSCM, Riello GB, Vasconcelos DC, Guedes GMM, Serpa R, Bandeira TJPG, et al. 2016. Farnesol increases the susceptibility of Burkholderia pseudomallei biofilm to antimicrobials used to treat melioidosis. J. Appl. Microbiol. 120: 600-606.  https://doi.org/10.1111/jam.13027
  21. Sirijant N, Sermswan RW, Wongratanacheewin S. 2016. Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. J. Med. Microbiol. 65: 1296-1306.  https://doi.org/10.1099/jmm.0.000358
  22. Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. 2010. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One 5: e9196. 
  23. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. 2016. Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem. 80: 7-12.  https://doi.org/10.1080/09168451.2015.1058701
  24. Lin Chua S, Liu Y, Li Y, Ting HJ, Kohli GS, CaiZ, et al. 2017. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 7: 451. 
  25. Ramli NSK, Eng Guan C, Nathan S, Vadivelu J. 2012. The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates. PLoS One 7: e44104. 
  26. Paksanont S, Sintiprungrat K, Yimthin T, Pumirat P, Peacock SJ, Chantratita N. 2018. Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Sci. Rep. 8: 9196. 
  27. Anutrakunchai C, Bolscher JGM, Krom BP, Kanthawong S, Chareonsudjai S, Taweechaisupapong S. 2018. Impact of nutritional stress on drug susceptibility and biofilm structures of Burkholderia pseudomallei and Burkholderia thailandensis grown in static and microfluidic systems. PLoS One 13: e0194946. 
  28. Zhou G, Yuan J, Gao H. 2015. Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Front. Microbiol. 6: 790. 
  29. Kim B, Park J-S, Choi H-Y, Yoon SS, Kim W-G. 2018. Terrein is an inhibitor of quorum sensing and c-di-GMP in Pseudomonas aeruginosa: a connection between quorum sensing and c-di-GMP. Sci. Rep. 8: 8617. 
  30. Opoku-Temeng C, Sintim HO. 2017. Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules. In: c-di-GMP Signaling: Methods and Protocols. Sauer K (Ed.), Springer New York, New York, NY, pp. 419-430 (2017). 
  31. Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. 2014. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol. 16: 1961-1981.  https://doi.org/10.1111/1462-2920.12448
  32. Jones CJ, Utada A, Davis KR, et al. 2015. c-di-GMP Regulates motile to sessile transition by modulating MshA Pili Biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathog. 11: e1005068. 
  33. Mangalea MR, Plumley BA, Borlee BR. 2017. Nitrate sensing and metabolism inhibit biofilm formation in the opportunistic pathogen Burkholderia pseudomallei by reducing the intracellular concentration of c-di-GMP. Front. Microbiol. 8: 1353. 
  34. Tseng BS, Majerczyk CD, Passos da Silva D, Chandler JR, Peter Greenberg E, Parsek MR. 2016. Quorum sensing influences Burkholderia thailandensis biofilm development and matrix production. J. Bacteriol. 198: 2643-2650.  https://doi.org/10.1128/JB.00047-16
  35. Van Acker H, Crabbe A, Jurenas D, Ostyn L, Sass A, Daled S, et al. 2019. The role of small proteins in Burkholderia cenocepacia J2315 biofilm formation, persistence and intracellular growth. Biofilm. 1: 100001. 
  36. Chen L-H, Koseoglu VK, Guvener ZT, Myers-Morales T, Reed JM, D'Orazio SEF, et al. 2014. Cyclic di-GMP-dependent Signaling pathways in the pathogenic firmicute Listeria monocytogenes. PLoS Pathog. 10: e1004301. 
  37. Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Microbiol. 15: 271-284.  https://doi.org/10.1038/nrmicro.2016.190
  38. Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14: 576-588.  https://doi.org/10.1038/nrmicro.2016.89
  39. Jiang Y, Geng M, Bai L. 2020. Targeting biofilms therapy: Current research strategies and development hurdles. Microorganisms 8: 1222. 
  40. Bellich B, Jou IA, Caterino M, Rizzo R, Ravenscroft N, Fazli M, et al. 2020. Burkholderia cenocepacia H111 produces a water-insoluble exopolysaccharide in biofilm: Structural determination and molecular modelling. Int. J. Mol. Sci. 21: 1702. 
  41. Plumley BA, Martin KH, Borlee GI, Marlenee NL, Burtnick MN, Brett PJ, et al. 2017. Thermoregulation of biofilm formation in Burkholderia pseudomallei is disrupted by mutation of a putative diguanylate cyclase. J. Bacteriol. 199: e00780-16. 
  42. Lee HS, Gu F, Ching SM, Lam Y, Chua KL. 2010. CdpA is a Burkholderia pseudomallei cyclic di-GMP phosphodiesterase involved in autoaggregation, flagellum synthesis, motility, biofilm formation, cell invasion, and cytotoxicity. Infect. Immun. 78: 1832-1840.  https://doi.org/10.1128/IAI.00446-09
  43. Vitale A, Paszti S, Takahashi K, Toyofuku M, Pessi G, Eberl L. 2020. Mapping of the denitrification pathway in Burkholderia thailandensis by genome-wide mutant profiling. J. Bacteriol. 202: e00304-20.  https://doi.org/10.1128/JB.00304-20
  44. Mangalea MR, Borlee BR. 2022. The NarX-NarL two-component system regulates biofilm formation, natural product biosynthesis, and host-associated survival in Burkholderia pseudomallei. Sci. Rep. 12: 203. 
  45. Chin C-Y, Hara Y, Ghazali A-K, Yap S-J, Kong C, Wong Y-C, et al. 2015. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics 16: 471. 
  46. Zhang Y, Guo J, Zhang N, Yuan W, Lin Z, Huang W. 2019. Characterization and analysis of a novel diguanylate cyclase PA0847 from Pseudomonas aeruginosa PAO1. Infect. Drug Resist. 12: 655-665.  https://doi.org/10.2147/IDR.S194462
  47. Romling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77: 1-52.  https://doi.org/10.1128/MMBR.00043-12
  48. Orr MW, Donaldson GP, Severin GB, et al. 2015. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc. Natl. Acad. Sci. USA 112: E5048-E5057.  https://doi.org/10.1073/pnas.1507245112
  49. Ha D-G, O'Toole GA. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol. Spectr. 3: MB-0003-2014. 
  50. Nicastro GG, Kaihami GH, Pulschen AA, et al. 2020. c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein. Sci. Rep. 10: 3077. 
  51. Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M, et al. 2019. Key players and individualists of Cyclic-di-GMP signaling in Burkholderia cenocepacia. Front. Microbiol. 10: 3286. 
  52. Borlee GI, Mangalea MR, Martin KH, Plumley BA, Golon SJ, Borlee BR. 2022. Disruption of c-di-GMP signaling networks unlocks cryptic expression of secondary metabolites during biofilm growth in Burkholderia pseudomallei. Appl. Environ. Microbiol. 88: e02431-21. 
  53. Wang Z, Xie X, Shang D, Xie L, Hua Y, Song L, et al. 2022. A c-di-GMP signaling cascade controls motility, biofilm formation, and virulence in Burkholderia thailandensis. Appl. Environ. Microbiol. 88: e02529-21. 
  54. Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FSL. 2008. The Burkholderia genome database: facilitating flexible queries and comparative analyses. Bioinformatics 24: 2803-2804.  https://doi.org/10.1093/bioinformatics/btn524
  55. Galperin MY, Nikolskaya AN, Koonin EV. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203: 11-21.  https://doi.org/10.1111/j.1574-6968.2001.tb10814.x
  56. Whiteley CG, Lee D-J. 2015. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol. Adv. 33: 124-141.  https://doi.org/10.1016/j.biotechadv.2014.11.010
  57. Hengge R, Galperin MY, Ghigo J-M, Gomelsky M, Green J, Hughes KT, et al. 2016. Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins of Escherichia coli. J. Bacteriol. 198: 7-11.  https://doi.org/10.1128/JB.00424-15
  58. Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2: 1-25.  https://doi.org/10.1101/cshperspect.a012427
  59. Reen FJ, Gutierrez-Barranquero JA, Parages ML. 2018. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl. Microbiol. Biotechnol. 102: 2063-2073.  https://doi.org/10.1007/s00253-018-8787-x
  60. Zhao X, Yu Z, Ding T. 2020. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8: 425. 
  61. Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T. 2009. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res. Microbiol. 160: 144-151.  https://doi.org/10.1016/j.resmic.2008.12.003
  62. Brackman G, Coenye T. 2015. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 21: 5-11.  https://doi.org/10.2174/1381612820666140905114627
  63. Ulrich RL, Ulrich RL. 2004. Quorum quenching: Enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70: 6173-6180.  https://doi.org/10.1128/AEM.70.10.6173-6180.2004
  64. Tan W-S, Law JW-F, Letchumanan V, Chan K-G. 2019. Decoding the mystery of how bacteria "talk": Among Gram-negative microorganisms. Prog. Microbes Mol. Biol. 2 DOI: https://doi.org/10.36877/pmmb.a0000038. 
  65. Klaus JR, Deay J, Neuenswander B, et al. 2018. Malleilactone is a Burkholderia pseudomallei virulence factor regulated by antibiotics and quorum sensing. J. Bacteriol. 200: e00008-18.  https://doi.org/10.1128/JB.00008-18
  66. Gamage AM, Shui G, Wenk MR, Chua KL. 2011. N-Octanoylhomoserine lactone signalling mediated by the BpsI-BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology 157: 1176-1186.  https://doi.org/10.1099/mic.0.046540-0
  67. Kumari A, Pasini P, Daunert S. 2008. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal. Bioanal. Chem. 391: 1619-1627.  https://doi.org/10.1007/s00216-008-2002-3
  68. Mangwani N, Kumari S, Das S. 2015. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Appl. Microbiol. Biotechnol. 99: 10283-10297.  https://doi.org/10.1007/s00253-015-6868-7
  69. Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. 2017. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog. 13: 1-25.  https://doi.org/10.1371/journal.ppat.1006504
  70. Song Y, Xie C, Ong Y-M, Gan Y-H, Chua K-L. 2005. The BpsIR quorum-sensing system of Burkholderia pseudomallei. J. Bacteriol. 187: 785-790.  https://doi.org/10.1128/JB.187.2.785-790.2005
  71. Mott T, Panchal RG, Rajamani S. 2017. Quorum sensing in Burkholderia pseudomallei and other Burkholderia species. Curr. Trop. Med. Rep. 4: 199-207.  https://doi.org/10.1007/s40475-017-0127-1
  72. Lazar Adler NR, Dean RE, Saint RJ, Stevens MP, Prior JL, Atkins TP, et al. 2013. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation of Burkholderia pseudomallei. PLoS One 8: e79461. 
  73. Coulon PML, Zlosnik JEA, Deziel E. 2021. Presence of the Hmq system and production of 4-Hydroxy-3-Methyl-2-Alkylquinolines are heterogeneously distributed between Burkholderia cepacia complex species and more prevalent among environmental than clinical isolates. Microbiol. Spectr. 9: e00127-21. 
  74. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M. 2011. Quinolones: from antibiotics to autoinducers. FEMS Microbiol. Rev. 35: 247-274.  https://doi.org/10.1111/j.1574-6976.2010.00247.x
  75. Vial L, Lepine F, Milot S, Groleau M-C, Dekimpe V, Woods DE, et al. 2008. Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-Hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J. Bacteriol. 190: 5339-5352.  https://doi.org/10.1128/JB.00400-08
  76. Butt A, Halliday N, Williams P, Atkins HS, Bancroft GJ, Titball RW. 2016. Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence. Res. Microbiol. 167: 159-167.  https://doi.org/10.1016/j.resmic.2015.11.002
  77. Boon C, Deng Y, Wang L-H, He Y, Xu J-L, Fan Y, et al. 2008. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J. 2: 27-36.  https://doi.org/10.1038/ismej.2007.76
  78. Deng Y, Boon C, Eberl L, Zhang L-H. 2009. Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase. J. Bacteriol. 191: 7270-7278.  https://doi.org/10.1128/JB.00681-09
  79. Yang C, Cui C, Ye Q, Kan J, Fu S, Song S, et al. 2017. Burkholderia cenocepacia integrates cis-2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence. Proc. Natl. Acad. Sci. USA 114: 13006-13011.  https://doi.org/10.1073/pnas.1709048114
  80. Deng Y, Schmid N, Wang C, Wang J, Pessi G, Wu D, et al. 2012. Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proc. Natl. Acad. Sci. USA 109: 15479-15484.  https://doi.org/10.1073/pnas.1205037109
  81. Deng Y, Lim A, Wang J, Zhou T, Chen S, Lee J, et al. 2013. Cis-2-dodecenoic acid quorum sensing system modulates N-acyl homoserine lactone production through RpfR and cyclic di-GMP turnover in Burkholderia cenocepacia. BMC Microbiol. 13: 148. 
  82. Cui C, Yang C, Song S, et al. 2018. A novel two-component system modulates quorum sensing and pathogenicity in Burkholderia cenocepacia. Mol. Microbiol. 108: 32-44.  https://doi.org/10.1111/mmi.13915
  83. Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS, et al. 2019. Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biol. 17: e3000123. 
  84. Wang M, Li X, Song S, Cui C, Zhang L-H, Deng Y. 2022. The cis-2-dodecenoic acid (BDSF) quorum sensing system in Burkholderia cenocepacia. Appl. Environ. Microbiol. 88: e02342-21. 
  85. Sass A, Kiekens S, Coenye T. 2017. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci. Rep. 7: 15665. 
  86. Pita T, Feliciano JR, Leitao JH. 2018. Small noncoding regulatory RNAs from Pseudomonas aeruginosa and Burkholderia cepacia complex. Int. J. Mol. Sci. 19: 3759. 
  87. Kiekens S, Sass A, Van Nieuwerburgh F, Deforce D, Coenye T. 2018. The small RNA ncS35 regulates growth in Burkholderia cenocepacia J2315. mSphere 3: e00579-17. 
  88. Rossi F, De Philippis R. 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5: 1218-1238.  https://doi.org/10.3390/life5021218
  89. Cuzzi B, Herasimenka Y, Silipo A, Lanzetta R, Liut G, Rizzo R, et al. 2014. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: A comparative structural investigation. PLoS One 9: e94372. 
  90. Ciofu O, Tolker-Nielsen T. 2019. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front. Microbiol. 10: 913. 
  91. Mangalea MR, Borlee GI, Borlee BR. 2017. The current status of extracellular polymeric substances produced by Burkholderia pseudomallei. Curr. Trop. Med. Reports 4: 117-126.  https://doi.org/10.1007/s40475-017-0118-2
  92. Nimtz M, Wray V, Domke T, Brenneke B, Haussler S, Steinmetz I. 1997. Structure of an acidic exopolysaccharide of Burkholderia pseudomallei. Eur. J. Biochem. 250: 608-616.  https://doi.org/10.1111/j.1432-1033.1997.0608a.x
  93. Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. 2015. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains. Microbiol. Immunol. 59: 653-663.  https://doi.org/10.1111/1348-0421.12331
  94. Laroussarie A, Barycza B, Andriamboavonjy H, Tamigney Kenfack M, Bleriot Y, Gauthier C. 2015. Synthesis of the tetrasaccharide repeating unit of the β-Kdo-containing exopolysaccharide from Burkholderia pseudomallei and B. cepacia complex. J. Org. Chem. 80: 10386-10396.  https://doi.org/10.1021/acs.joc.5b01823
  95. Park J, Lee D, Kim M-S, Kim DY, Shin DH. 2015. A preliminary X-ray study of 3-deoxy-d-manno-oct-2-ulosonic acid 8-phosphate phosphatase (YrbI) from Burkholderia pseudomallei. Acta Crystallogr. Sect. F Struct. Biol. Commun. 71: 790-793.  https://doi.org/10.1107/S2053230X15006135
  96. Borlee GI, Plumley BA, Martin KH, Somprasong N, Mangalea MR, Islam MN, et al. 2017. Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster. PLoS Negl. Trop. Dis. 11: e0005689. 
  97. Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker-Nielsen T. 2013. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. Microbiologyopen 2: 105-122.  https://doi.org/10.1002/mbo3.61
  98. Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, et al. 2011. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol. Microbiol. 82: 327-341.  https://doi.org/10.1111/j.1365-2958.2011.07814.x
  99. Poulin MB, Kuperman LL. 2021. Regulation of biofilm exopolysaccharide production by cyclic di-guanosine monophosphate. Front. Microbiol. 12: 2506. 
  100. Chiang W-C, Nilsson M, Jensen PO, Hoiby N, Nielsen TE, Givskov M, et al. 2013. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 57: 2352-2361.  https://doi.org/10.1128/AAC.00001-13
  101. Kavanaugh JS, Flack CE, Lister J, Ricker EB, Ibberson CB, Jenul C, et al. 2019. Identification of extracellular DNA-binding proteins in the biofilm matrix. mBio 10: e01137-19. 
  102. Teran LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P, et al. 2020. Proteomic studies of the biofilm matrix including outer membrane vesicles of Burkholderia multivorans c1576, a strain of clinical importance for cystic fibrosis. Microorganisms 8: 1826. 
  103. Panlilio H, Rice CV. 2021. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol. Bioeng. 118: 2129-2141.  https://doi.org/10.1002/bit.27760
  104. Wongkaewkhiaw S, Kanthawong S, Bolscher JGM, Nazmi K, Taweechaisupapong S, Krom BP. 2020. DNase-mediated eDNA removal enhances D-LL-31 activity against biofilms of bacteria isolated from chronic rhinosinusitis patients. Biofouling 36: 1117-1128. 
  105. Ibanez de Aldecoa AL, Zafra O, Gonzalez-Pastor JE. 2017. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front. Microbiol. 8: 1390. 
  106. Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. 2013. Life after death: The critical role of extracellular DNA in microbial biofilms. Lett. Appl. Microbiol. 57: 467-475.  https://doi.org/10.1111/lam.12134
  107. Das T, Sehar S, Manefield M. 2013. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ. Microbiol. Rep. 5: 778-786.  https://doi.org/10.1111/1758-2229.12085
  108. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, et al. 2007. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153: 2083-2092.  https://doi.org/10.1099/mic.0.2007/006031-0
  109. Petrova OE, Schurr JR, Schurr MJ, Sauer K. 2011. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol. Microbiol. 81: 767-783.  https://doi.org/10.1111/j.1365-2958.2011.07733.x
  110. Austin CR, Goodyear AW, Bartek IL, Stewart A, Sutherland MD, Silva EB, et al. 2015. A Burkholderia pseudomallei colony variant necessary for gastric colonization. mBio. 6: e02462--14. 
  111. Okaro U, Mou S, DeShazer D. 2021. Production and molecular composition of Burkholderia pseudomallei and Burkholderia thailandensis biofilms. Authorea. 
  112. Alwis PA, Treerat P, Gong L, Lucas DD, Allwood EM, Prescott M, et al. 2020. Disruption of the Burkholderia pseudomallei two-component signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation. Vet. Microbiol. 242: 108603. 
  113. Pakkulnan R, Anutrakunchai C, Kanthawong S, Taweechaisupapong S, Chareonsudjai P, Chareonsudjai S. 2019. Extracellular DNA facilitates bacterial adhesion during Burkholderia pseudomallei biofilm formation. PLoS One 14: e0213288. 
  114. Sena-Velez M, Redondo C, Graham JH, Cubero J. 2016. Presence of extracellular DNA during biofilm formation by Xnthomonas citri subsp. citri strains with different host range. PLoS One 11: e0156695. 
  115. Okshevsky M, Meyer RL. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 41: 341-352.  https://doi.org/10.3109/1040841X.2013.841639
  116. Lappann M, Claus H, Van Alen T, Harmsen M, Elias J, Molin S, et al. 2010. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. Mol. Microbiol. 75: 1355-1371.  https://doi.org/10.1111/j.1365-2958.2010.07054.x
  117. Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S, et al. 2020. The biofilm matrix scaffold of Pseudomonas species contains non-canonically base paired extracellular DNA and RNA. bioRxiv. doi: https://doi.org/10.1101/527267. 
  118. Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S, Foo YH, et al. 2021. The biofilm matrix scaffold of Peudomonas aeruginosa contains G-quadruplex extracellular DNA structures. NPJ Biofilms Microbiomes 7: 27. 
  119. Goodman SD, Obergfell KP, Jurcisek JA, Novotny LA, Downey JS, Ayala EA, et al. 2011. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol. 4: 625-637.  https://doi.org/10.1038/mi.2011.27
  120. Devaraj A, Buzzo JR, Mashburn-Warren L, et al. 2019. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc. Natl. Acad. Sci. USA 116: 25068 LP-25077. 
  121. Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. 2017. Nontypeable haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc. Natl. Acad. Sci. USA 114: E6632-E6641.  https://doi.org/10.1073/pnas.1705508114
  122. Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. 2013. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PLoS One 8: e67629. 
  123. Novotny LA, Goodman SD, Bakaletz LO. 2020. Targeting a bacterial DNABII protein with a chimeric peptide immunogen or humanised monoclonal antibody to prevent or treat recalcitrant biofilm-mediated infections. EBioMedicine 59: 102867. 
  124. Fong JNC, Yildiz FH. 2015. Biofilm matrix proteins. Microbiol. Spectr. 3: 10.1128/microbiolspec.MB-0004-2014. 
  125. Flemming H-CC, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8: 623-633.  https://doi.org/10.1038/nrmicro2415
  126. Ferreira AS, Silva IN, Oliveira VH, Becker JD, Givskov M, Ryan RP, et al. 2013. Comparative transcriptomic analysis of the Burkholderia cepacia tyrosine kinase bceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence. Appl. Environ. Microbiol. 79: 3009-3020.  https://doi.org/10.1128/AEM.00222-13
  127. Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L, et al. 2020. Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Sci. Rep. 10: 9390. 
  128. Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C, et al. 2014. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog. Dis. 72: 143-160.  https://doi.org/10.1111/2049-632X.12195
  129. Berne C, Ducret A, Hardy GG, Brun YV. 2015. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria [Internet]. In: Microbial Biofilms, John Wiley & Sons, Ltd, pp. 163-199. 
  130. Essex-Lopresti AE, Boddey JA, Thomas R, et al. 2005. A type IV Pilin, PilA, contributes to Adherence of Burkholderia pseudomallei and virulence in vivo. Infect. Immun. 73: 1260-1264.  https://doi.org/10.1128/IAI.73.2.1260-1264.2005
  131. Okaro U, Mou S, Lenkoue G, Williams JA, Bonagofski A, Larson P, et al. 2022. A type IVB pilin influences twitching motility and in vitro adhesion to epithelial cells in Burkholderia pseudomallei. Microbiology 168: 001150. 
  132. Jan AT. 2017. Outer Membrane Vesicles (OMVs) of Gram-negative bacteria: A perspective update. Front. Microbiol. 8: 1053. 
  133. Wang W, Chanda W, Zhong M. 2015. The relationship between biofilm and outer membrane vesicles: a novel therapy overview. FEMS Microbiol. Lett. 362: fnv117. 
  134. Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64: 163-184.  https://doi.org/10.1146/annurev.micro.091208.073413
  135. Kumar B, Sorensen JL, Cardona ST. 2018. A c-di-GMP-modulating protein regulates swimming motility of Burkholderia cenocepacia in response to arginine and glutamate. Front. Cell. Infect. Microbiol. 8: 56. 
  136. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. 2016. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44: D646-53.  https://doi.org/10.1093/nar/gkv1227
  137. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. 2022. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50: W276-W279.  https://doi.org/10.1093/nar/gkac240
  138. Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42: W320-W324. https://doi.org/10.1093/nar/gku316