• 제목/요약/키워드: Pathogen Detection

검색결과 322건 처리시간 0.027초

우유 및 유제품 중 잔류항생물질 분석법에 대한 연구 (Overview of Analytical Methods for Detection of Antibiotics in Milk and Dairy Products)

  • 김현욱;김기환;설국환;오미화;박범영
    • Journal of Dairy Science and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.59-65
    • /
    • 2013
  • Antibiotic residues are undesirable in milk and milk products for a number of reasons. In particular, they can have harmful effects on public health and harm to the manufacturer of the cultured milk products, e.g. MRSA etc. Although government regulatory agencies and the dairy industry have been successful in decreasing the presence of high concentrations of antibiotic residues, violations still occur and lead to contaminated products. As a result, several rapid and reliable methods for the detection of antibiotic residues have been developed, including microbiological and instrumental analysis methods. The conventional methods are time consuming, but recent improvements have allowed for better detection time, sensitivity, and accuracy. An example of an advanced detection instrument is the biosensor, which has several applications in food and environmental science, e.g. food-born pathogen detection, antimicrobial residues etc. In the present review, the recent trends in the methods used to test for antibiotic residues in milk and dairy products, as well as their specific applications, have been discussed.

  • PDF

Application of Engineered Zinc Finger Proteins Immobilized on Paramagnetic Beads for Multiplexed Detection of Pathogenic DNA

  • Shim, Jiyoung;Williams, Langley;Kim, Dohyun;Ko, Kisung;Kim, Moon-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1323-1329
    • /
    • 2021
  • Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information. Here, we utilized two engineered ZFPs (Stx2-268 and SEB-435) to detect the Shiga toxin (stx2) gene and the staphylococcal enterotoxin B (seb) gene present in foodborne pathogens, Escherichia coli O157 and Staphylococcus aureus, respectively. Engineered ZFPs are immobilized on a paramagnetic bead as a detection platform to efficiently isolate the target dsDNA-ZFP bound complex. The small paramagnetic beads provide a high surface area to volume ratio, allowing more ZFPs to be immobilized on the beads, which leads to increased target DNA detection. The fluorescence signal was measured upon ZFP binding to fluorophore-labeled target dsDNA. In this study, our system provided a detection limit of ≤ 60 fmol and demonstrated high specificity with multiplexing capability, suggesting a potential for development into a simple and reliable diagnostic for detecting multiple pathogens without target amplification.

Graphene Based Electrochemical DNA Biosensor for Detection of False Smut of Rice (Ustilaginoidea virens)

  • Rana, Kritika;Mittal, Jagjiwan;Narang, Jagriti;Mishra, Annu;Pudake, Ramesh Namdeo
    • The Plant Pathology Journal
    • /
    • 제37권3호
    • /
    • pp.291-298
    • /
    • 2021
  • False smut caused by Ustilaginoidea virens is an important rice fungal disease that significantly decreases its production. In the recent past, conventional methods have been developed for its detection that is time-consuming and need high-cost equipments. The research and development in nanotechnology have made it possible to assemble efficient recognition interfaces in biosensors. In this study, we present a simple, sensitive, and selective oxidized graphene-based geno-biosensor for the detection of rice false smut. The biosensor has been developed using a probe DNA as a biological recognition element on paper electrodes, and oxidized graphene to enhance the limit of detection and sensitivity of the sensor. Probe single-stranded DNA (ssDNA) and target ssDNA hybridization on the interface surface has been quantitatively measured with the electrochemical analysis tools namely, cyclic voltammetry, and linear sweep voltammetry. To confirm the selectivity of the device, probe hybridization with non-complementary ssDNA target has been studied. In our study, the developed sensor was able to detect up to 10 fM of target ssDNA. The paper electrodes were employed to produce an effective and cost-effective platform for the immobilization of the DNA and can be extended to design low-cost biosensors for the detection of the other plant pathogens.

Detection and Quantification of Apple Stem Grooving Virus in Micropropagated Apple Plantlets Using Reverse-Transcription Droplet Digital PCR

  • Kim, Sung-Woong;Lee, Hyo-Jeong;Cho, Kang Hee;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.417-422
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a destructive viral pathogen of pome fruit trees that causes significant losses to fruit production worldwide. Obtaining ASGV-free propagation materials is essential to reduce economic losses, and accurate and sensitive detection methods to screen ASGV-free plantlets during in vitro propagation are urgently necessary. In this study, ASGV was sensitively and accurately quantified from in vitro propagated apple plantlets using a reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay. The optimized RT-ddPCR assay was specific to other apple viruses, and was at least 10-times more sensitive than RT-real-time quantitative PCR assay. Furthermore, the optimized RT-ddPCR assay was validated for the detection and quantification of ASGV using micropropagated apple plantlet samples. This RT-ddPCR assay can be utilized for the accurate quantitative detection of ASGV infection in ASGV-free certification programs, and can thus contribute to the production of ASGV-free apple trees.

중합효소연쇄 반응에 의한 벼 흰잎마름병균의 특이적 검출 (PCR-Based Sensitive Detection and Identification of Xanthomonas oryzae pv. oryzae)

  • Lee, Byoung-Moo;Park, Young-Jin;Park, Dong-Suk;Kim, Jeong-Gu;Kang, Hee-Wan;Noh, Tae-Hwan;Lee, Gil-Bok;Ahn, Joung-Kuk
    • 한국미생물·생명공학회지
    • /
    • 제32권3호
    • /
    • pp.256-264
    • /
    • 2004
  • 본 연구는 벼의 세균병 중 치명적인 흰잎마름병을 유발하는 Xanthomonas oryzae pv. oryzae를 검출할 수 있는 프라이머를 개발하기 위해 실시하였다. X. o. pv. oryzae str. KACC10331의 hpaA유전자 염기서열로부터 흰잎마름병만을 특이적으로 검출할 수 있는 프라이머를 제작하여 중합효소연쇄반응에 사용하였다. 개발된 특이 프라이머는 X. o. pv. oryzae str. KACC10331과 X. campestris pv. vesicatoria, X. campestris pv. campestris, X. axonopodis pv. citri 그리고 X. axonopodis pv. glycines의 phaA유전자 염기서열의 상동성을 비교하여, 그 중 X. o. pv. oryzae만이 가지는 특이적인 부분을 바탕으로 각각 20-mer인 XOF와 XOR를 제작하였다. 제작된 프라이머를 이용하여 중합효소 연쇄반응을 실시한 결과 반응 후 생성된 단편의 크기는 534-bp였다. 반응 후 생성된 단편은 Southern hybridization을 통하여 Xanthomonas 균주들의 hpaA유전자 존재 여부 및 그 상동성을 비교분석하기 위해 사용하였다. 또한 제작된 프라이머를 이용하여 흰잎마름병에 감염된 벼 잎에서의 검출 여부를 확인하였고 X. o. pv. oryzae의 순수 균주 배양액을 중합효소연쇄반응에 이용하여 검출한계를 검정하였다. 본 연구에서 제작된 프라이머를 사용한 중합효소연쇄 반응 방법은 X. o. pv. oryzae의 검출 뿐만 아니라 흰잎마름병의 발생 예찰에 매우 유용할 것으로 판단 되었다.

Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid and Sensitive Detection of Barley Yellow Dwarf Virus in Oat

  • Kim, Na-Kyeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.497-502
    • /
    • 2020
  • Barley yellow dwarf virus (BYDV) is an economically important plant pathogen that causes stunted growth, delayed heading, leaf yellowing, and purple leaf tip, thereby reducing the yields of cereal crops worldwide. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for the detection of BYDV in oat leaf samples. The RT-RPA assay involved incubation at an isothermal temperature (42℃) and could be performed rapidly in 5 min. In addition, no cross-reactivity was observed to occur with other cereal-infecting viruses, and the method was 100 times more sensitive than conventional reverse transcription polymerase chain reaction. Furthermore, the assay was validated for the detection of BYDV in both field-collected oat leaves and viruliferous aphids. Thus, the RT-RPA assay developed in the present study represents a simple, rapid, sensitive, and reliable method for detecting BYDV in oats.

Rapid Detection of Salmonella enteritidis in Pork Samples with Impedimetric Biosensor: Effect of Electrode Spacing on Sensitivity

  • Kim, Gi-Young;Moon, Ji-Hea;Hahm, Bung-Kwon;Morgan, Mark;Bhunia, Arun;Om, Ae-Son
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.89-94
    • /
    • 2009
  • Frequent outbreaks of foodborne illness have been increasing the awareness of food safety. Conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Some immunological, rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella entritidis in food sample. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using a semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on neutravidin-biotin binding on the surface of the IME to form an active sensing layer. To evaluate the effect of electrode gap on sensitivity of the sensor, 3 types of sensors with different electrode gap sizes (2, 5, and $10{\mu}m$) were fabricated and tested. The impedimetric biosensor could detect $10^3\;CFU/mL$ of Salmonella in pork meat extract with an incubation time of 5 min. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

병원성미생물 및 유해물질 검출을 위한 PDA 센서 (PDA Sensors for the Detection of Pathogenic Bacteria and Hazardous Substances)

  • 임민철;김영록
    • Journal of Dairy Science and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.43-49
    • /
    • 2011
  • The increasing number of analytes in concern and the alarming health and environmental consequences have required effective means of monitoring for safety control. Biosensors offer advantages as alternatives to conventional analytical methods because of their inherent specificity, simplicity, and quick response. Colorimetric biosensor, one of biosensor group, is one of the easiest and the most convenient methods because detection can be done using naked eye. Recently, a novel method for rapid detection and read-out of specific immunoassays with naked eye using polydiacetylene (PDA) was developed. Polydiacetylene has recently been in the limelight as a transducing materials because of its special features that allow optical transduction of sensory signals and inherent simplicity and ease of use in supramolecular chemistry. Various forms of PDA are used as a sensor platform for detection of various biological analytes such as viruses, DNA, proteins, bacteria and hazardous molecules.

  • PDF

Establishment and Application of Polymerase Spiral Reaction Amplification for Salmonella Detection in Food

  • Xu, Wenli;Gao, Jun;Zheng, Haoyue;Yuan, Chaowen;Hou, Jinlong;Zhang, Liguo;Wang, Guoqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1543-1552
    • /
    • 2019
  • Salmonella is a common zoonotic and foodborne pathogen that causes high morbidity and mortality in developing countries. In this study, we established and validated a polymerase spiral reaction (PSR) assay which targeted the conserved invasion gene (invA) of Salmonella by SYBR Green I indicator methods. Subsequently, assays for determination of the optimal conditions for optimal specificity and sensitivity of PSR were performed. We performed comprehensive evaluations using loop-mediated isothermal amplification (LAMP) and real-time PCR. A total number of 532 samples of daily food were analyzed by PSR. Twenty-seven bacterial strains were tested in the specificity assay, from which positive results were obtained only for 14-Salmonella strains. However, none of the 13 non-Salmonella strains was amplified. Similarly with LAMP and real-time PCR, the detection limit of the PSR assay was 50 CFU/ml. The PSR method was also successfully applied to evaluate the contamination with Salmonella in 532 samples of daily food, corroborating traditional culture method data. The novel PSR method is simple, sensitive, and rapid and provides new insights into the prevention and detection of foodborne diseases.

Rapid and Visual Detection of Barley Yellow Dwarf Virus by Reverse Transcription Recombinase Polymerase Amplification with Lateral Flow Strips

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제38권2호
    • /
    • pp.159-166
    • /
    • 2022
  • Barley yellow dwarf virus (BYDV) has been a major viral pathogen causing significant losses of cereal crops including oats worldwide. It spreads naturally through aphids, and a rapid, specific, and reliable diagnostic method is imperative for disease monitoring and management. Here, we established a rapid and reliable method for isothermal reverse transcription recombinase polymerase amplification (RT-RPA) combined with a lateral flow strips (LFS) assay for the detection of BYDV-infected oat samples based on the conserved sequences of the BYDV coat protein gene. Specific primers and a probe for RT-RPA reacted and optimally incubated at 42℃ for 10 min, and the end-labeled amplification products were visualized on LFS within 10 min. The RT-RPA-LFS assay showed no cross-reactivity with other major cereal viruses, including barley mild mosaic virus, barley yellow mosaic virus, and rice black streaked dwarf virus, indicating high specificity of the assay. The sensitivity of the RT-RPA-LFS assay was similar to that of reverse transcription polymerase chain reaction, and it was successfully validated to detect BYDV in oat samples from six different regions and in individual aphids. These results confirm the outstanding potential of the RT-RPA-LFS assay for rapid detection of BYDV.