Browse > Article
http://dx.doi.org/10.4014/jmb.2106.06057

Application of Engineered Zinc Finger Proteins Immobilized on Paramagnetic Beads for Multiplexed Detection of Pathogenic DNA  

Shim, Jiyoung (Department of Chemistry, Western Kentucky University)
Williams, Langley (Department of Chemistry, Western Kentucky University)
Kim, Dohyun (Department of Mechanical Engineering, Myongji University)
Ko, Kisung (Department of Medicine, College of Medicine, Chung-Ang University)
Kim, Moon-Soo (Department of Chemistry, Western Kentucky University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.9, 2021 , pp. 1323-1329 More about this Journal
Abstract
Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information. Here, we utilized two engineered ZFPs (Stx2-268 and SEB-435) to detect the Shiga toxin (stx2) gene and the staphylococcal enterotoxin B (seb) gene present in foodborne pathogens, Escherichia coli O157 and Staphylococcus aureus, respectively. Engineered ZFPs are immobilized on a paramagnetic bead as a detection platform to efficiently isolate the target dsDNA-ZFP bound complex. The small paramagnetic beads provide a high surface area to volume ratio, allowing more ZFPs to be immobilized on the beads, which leads to increased target DNA detection. The fluorescence signal was measured upon ZFP binding to fluorophore-labeled target dsDNA. In this study, our system provided a detection limit of ≤ 60 fmol and demonstrated high specificity with multiplexing capability, suggesting a potential for development into a simple and reliable diagnostic for detecting multiple pathogens without target amplification.
Keywords
Multiplexed double-stranded DNA detection; zinc finger proteins; magnetic beads; foodborne pathogen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ha DT, Ghosh S, Ahn CH, Segal DJ, Kim MS. 2018. Pathogen-specific DNA sensing with engineered zinc finger proteins immobilized on a polymer chip. Analyst 143: 4009-4016.   DOI
2 Kim MS, Stybayeva G, Lee JY, Revzin A, Segal DJ. 2011. A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications. Nucleic Acids Res. 39: e29.   DOI
3 Fang CS, Kim KS, Yu B, Jon S, Kim MS, Yang H. 2017. Ultrasensitive electrochemical detection of miRNA-21 using a zinc finger protein specific to DNA-RNA hybrids. Anal. Chem. 89: 2024-2031.   DOI
4 Porter JR, Stains CI, Segal DJ, Ghosh I. 2007. Split beta-lactamase sensor for the sequence-specific detection of DNA methylation. Anal. Chem. 79: 6702-6708.   DOI
5 Lee H, Shin TH, Cheon J, Weissleder R. 2015. Recent developments in magnetic diagnostic systems. Chem. Rev. 115: 10690-10724.   DOI
6 Shim WB, Song JE, Mun H, Chung DH, Kim MG. 2014. Rapid colorimetric detection of Salmonella typhimurium using a selective filtration technique combined with antibody-magnetic nanoparticle nanocomposites. Anal. Bioanal. Chem. 406: 859-866.   DOI
7 Dreier B, Segal DJ, Barbas CF. 2000. Insights into the molecular recognition of the 5 '-GNN-3 ' family of DNA sequences by zinc finger domains. J. Mol. Biol. 303: 489-502.   DOI
8 Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, et al. 2002. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. USA 99: 15687-15692.   DOI
9 Wu LY, Thompson DK, Li GS, Hurt RA, Tiedje JM, Zhou JZ. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 5780-5790.   DOI
10 Shieh YC, Tortorello ML, Fleischman GJ, Li D, Schaffner DW. 2014. Tracking and modeling norovirus transmission during mechanical slicing of globe tomatoes. Int. J. Food Microbiol. 180: 13-18.   DOI
11 Beerli RR, Barbas CF. 2002. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20: 135-141.   DOI
12 Pavletich NP, Pabo CO. 1991. Zinc finger DNA recognition - Crystal-structure of a Zif268-DNA complex at 2.1-A. Science252: 809-817.   DOI
13 Cleven BE, Palka-Santini M, Gielen J, Meembor S, Kronke M, Krut O. 2006. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. J. Clin. Microbiol. 44: 2389-2397.   DOI
14 Palka-Santini M, Cleven BE, Eichinger L, Kronke M, Krut O. 2009. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol. 9: 1.   DOI
15 Wang C, Wu B, Amer S, Luo J, Zhang H, Guo Y, et al. 2010. Phylogenetic analysis and molecular characteristics of seven variant Chinese field isolates of PRRSV. BMC Microbiol. 10: 146.   DOI
16 Peplies J, Lau SCK, Pernthaler J, Amann R, Glockner FO. 2004. Application and validation of DNA microarrays for the 16S rRNA-based analysis of marine bacterioplankton. Environ. Microbiol. 6: 638-645.   DOI
17 Wolfe SA, Nekludova L, Pabo CO. 2000. DNA recognition by Cys(2)His(2) zinc finger proteins. Ann. Rev. Biophy. Biomol. Struct. 29: 183-212.   DOI
18 Liu Q, Segal DJ, Ghiara JB, Barbas CF. 1997. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94: 5525-5530.   DOI
19 Kim MS, Kini AG. 2017. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol. Cells 40: 533-541.   DOI
20 Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF. 2001. Development of zinc finger domains for recognition of the 5 '-ANN-3 ' family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276: 29466-29478.   DOI
21 Kim C, Hoffmann G, Searson PC. 2017. Integrated magnetic bead-quantum dot immunoassay for malaria detection. ACS Sens. 2: 766-772.   DOI
22 Ha DT, Nguyen VT, Kim MS. 2021. Graphene oxide-based simple and rapid detection of antibiotic resistance gene via quantum dot-labeled zinc finger proteins. Anal. Chem. 3: 8459-8466.
23 Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. 2015. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115: 10530-10574.   DOI
24 Kim MS, Kim J. 2016. Multiplexed detection of pathogen-specific DNA using engineered zinc finger proteins without target amplification. Anal. Methods 8: 6696-6700.   DOI
25 Warsen AE, Krug MJ, LaFrentz S, Stanek DR, Loge FJ, Call DR. 2004. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 4216-4221.   DOI
26 Mirasoli M, Guardigli M, Michelini E, Roda A. 2014. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J. Pharm. Biomed. Anal. 87: 36-52.   DOI
27 Shim J, Nikolov A, Wasan D. 2017. Escherichia coli removal from model substrates: Underlying mechanism based on nanofluid structural forces. J. Colloid. Interface Sci. 498: 112-122.   DOI
28 Shim J, Stewart DS, Nikolov AD, Wasan DT, Wang R, Yan R, et al. 2017. Differential MS2 interaction with food contact surfaces determined by atomic force microscopy and virus recovery. Appl. Environ. Microbiol. 83: e01881-17.
29 Zhao T, Zhao P, Doyle MP. 2009. Inactivation of Salmonella and Escherichia coli O157:H7 on lettuce and poultry skin by combinations of levulinic acid and sodium dodecyl sulfate. J. Food Prot. 72: 928-936.   DOI
30 Bhakta MS, Segal DJ. 2010. The generation of zinc finger proteins by modular assembly. Methods Mol. Biol. 649: 3-30.   DOI
31 Evans BA, Ronecker JC, Han DT, Glass DR, Train TL, Deatsch AE. 2016. High-permeability functionalized silicone magnetic microspheres with low autofluorescence for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 62: 860-869.   DOI
32 Hayes MA, Polson NA, Phayre AN, Garcia AA. 2001. Flow-based microimmunoassay. Anal. Chem. 73: 5896-5902.   DOI
33 Segal DJ, Dreier B, Beerli RR, Barbas CF. 1999. Toward controlling gene expression at will: Selection and design of zinc finger domains recognizing each of the 5 '-GNN-3 ' DNA target sequences. Proc. Natl. Acad. Sci. USA 96: 2758-2763.   DOI